【題目】已知等差數(shù)列{an}的首項(xiàng)a1=3,且公差d≠0,其前n項(xiàng)和為Sn , 且a1 , a4 , a13分別是等比數(shù)列{bn}的b2 , b3 , b4 . (Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)證明 .
【答案】解:(Ⅰ)設(shè)等比數(shù)列的公比為q,則 ∵a1 , a4 , a13分別是等比數(shù)列{bn}的b2 , b3 , b4 .
∴
∵a1=3,∴d2﹣2d=0
∴d=2或d=0(舍去)
∴an=3+2(n﹣1)=2n+1
∵ ,
∴bn=3n﹣1;
(Ⅱ)證明:由(Ⅰ)知
∴ = = ( )
∴ = =
= <
∵ ≤ =
∴ ≥
∴
【解析】(Ⅰ)設(shè)等比數(shù)列的公比為q,利用a1 , a4 , a13分別是等比數(shù)列{bn}的b2 , b3 , b4 , 求出公差,即可求出數(shù)列{an}與{bn}的通項(xiàng)公式;(Ⅱ)求出前n項(xiàng)和,可得數(shù)列通項(xiàng),利用裂項(xiàng)法求數(shù)列的和,即可證得結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的等差數(shù)列的通項(xiàng)公式(及其變式)和等比數(shù)列的通項(xiàng)公式(及其變式),需要了解通項(xiàng)公式:或;通項(xiàng)公式:才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)有A、B、C三個(gè)不同的校區(qū),其中A校區(qū)有4000人,B校區(qū)有3000人,C校區(qū)有2000人,采用按校區(qū)分層抽樣的方法,從中抽取900人參加一項(xiàng)活動(dòng),則A、B、C校區(qū)分別抽。 )
A.400人、300人、200人
B.350人、300人、250人
C.250人、300人、350人
D.200人、300人、400人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣x3+3x+2分別在x1、x2處取得極小值、極大值.xOy平面上點(diǎn)A、B的坐標(biāo)分別為(x1 , f(x1))、(x2 , f(x2)),該平面上動(dòng)點(diǎn)P滿足 =4.求:
(1)求點(diǎn)A、B的坐標(biāo);
(2)求動(dòng)點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-a+lnx。
(1)若a=1,求證:當(dāng)x>1時(shí),f(x)>2x-1
(2)若存在x0≥e,使f(x)<2lnx0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“全面二孩”政策推行,我市將迎來(lái)生育高峰。今年新春伊始,泉城各醫(yī)院產(chǎn)科就已經(jīng)是一片忙碌至今熱度不減。衛(wèi)生部門進(jìn)行調(diào)查統(tǒng)計(jì)期間發(fā)現(xiàn)各醫(yī)院的新生兒中,不少都是“二孩”;在市第一醫(yī)院,共有40個(gè)猴寶寶降生,其中10個(gè)是“二孩”寶寶;
(1)從兩個(gè)醫(yī)院當(dāng)前出生的所有寶寶中按分層抽樣方法抽取7個(gè)寶寶做健康咨詢,
①在市第一醫(yī)院出生的一孩寶寶中抽取多少個(gè)?
②若從7個(gè)寶寶中抽取兩個(gè)寶寶進(jìn)行體檢,求這兩個(gè)寶寶恰出生不同醫(yī)院且均屬“二孩”的概率;
(II)根據(jù)以上數(shù)據(jù),能否有85%的把握認(rèn)為一孩或二孩寶寶的出生與醫(yī)院有關(guān)?
P(k≥k市) | 0.40 | 0.25 | 0.15 | 0.10 |
k市 | 0.708 | 1.323 | 2.072 | 2.706 |
K2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠共有10臺(tái)機(jī)器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術(shù)水平等因素限制,會(huì)產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗(yàn)知道,若每臺(tái)機(jī)器產(chǎn)生的次品數(shù)P(萬(wàn)件)與每臺(tái)機(jī)器的日產(chǎn)量x(萬(wàn)件)(4≤x≤12)之間滿足關(guān)系:P=0.1x2﹣3.2lnx+3,已知每生產(chǎn)1萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每產(chǎn)生1萬(wàn)件裝次品將虧損1萬(wàn)元.(利潤(rùn)=盈利﹣虧損) (I)試將該工廠每天生產(chǎn)這種元件所獲得的利潤(rùn)y(萬(wàn)元)表示為x的函數(shù);
(II)當(dāng)每臺(tái)機(jī)器的日產(chǎn)量x(萬(wàn)件)寫為多少時(shí)所獲得的利潤(rùn)最大,最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],下列命題中正確命題的序號(hào) .
①函數(shù)f(x)的最大值為1;
②函數(shù)f(x)的最小值為0;
③方程f(x)﹣ =0有無(wú)數(shù)個(gè)解;
④函數(shù)f(x)是增函數(shù);
⑤對(duì)任意的x∈R,函數(shù)f(x)滿足f(x+1)=f(x);
⑥函數(shù)f(x)的圖象與函數(shù)g(x)=|lgx|的圖象的交點(diǎn)個(gè)數(shù)為10個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,把方程f(x)-x=0的根按從小到大順序排成一個(gè)數(shù)列,則該數(shù)列的前n項(xiàng)和Sn=_________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量 =(sinx, cosx), =(﹣1,1), =(1,1),其中x∈(0,π].
(1)若( + )∥ ,求實(shí)數(shù)x的值;
(2)若 = ,求函數(shù)sinx的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com