【題目】已知雙曲線,經(jīng)過點(diǎn)的直線與該雙曲線交于兩點(diǎn).
(1)若與軸垂直,且,求的值;
(2)若,且的橫坐標(biāo)之和為,證明:.
(3)設(shè)直線與軸交于點(diǎn),求證:為定值.
【答案】(1)(2)證明見解析;(3)證明見解析;
【解析】
(1)把代入雙曲線方程求得坐標(biāo),由可求得;
(2)設(shè),設(shè)直線方程為,代入雙曲線方程應(yīng)用韋達(dá)定理得,由可求得,再由數(shù)量積的坐標(biāo)運(yùn)算計算出可得結(jié)論;
(3)設(shè)方程為,且,由可用表示出,代入雙曲線方程得,同理.故是方程的兩根.由韋達(dá)定理可得結(jié)論.
(1),,,
∴.
(2),設(shè),顯然直線斜率存在,設(shè)方程為,并與聯(lián)立得,由得,此時.
.
(3)有題意可知直線斜率必存在,設(shè)方程為,且.由得,所以,,又由于點(diǎn)在雙曲線上,故化簡得,同理.故是方程的兩根.則為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,是以為斜邊的等腰直角三角形,分別是的中點(diǎn),,.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面平面,四邊形是邊長為4的正方形,,,分別是,的中點(diǎn).
(1)求證:平面;
(2)若直線與平面所成角等于,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《易·系辭上》有“河出圖,洛出書”之說.河圖、洛書是中國古代流傳下來的兩幅神秘圖案,蘊(yùn)含了深奧的宇宙星象之理,被譽(yù)為“宇宙魔方”,是中華文化,陰陽術(shù)數(shù)之源.其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為1的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地對產(chǎn)品進(jìn)行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機(jī)抽取的100個產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對比,并對每個產(chǎn)品進(jìn)行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若當(dāng)時取得極值,求a的值及的單調(diào)區(qū)間;
(Ⅱ)若存在兩個極值點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論單調(diào)性;
(Ⅱ)當(dāng)時,設(shè)函數(shù)存在兩個零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左頂點(diǎn)為D,且以點(diǎn)D為圓心的圓與雙曲線C分別相交于點(diǎn)A、B,如圖所示.
(1)求雙曲線C的方程;
(2)求的最小值,并求出此時圓D的方程;
(3)設(shè)點(diǎn)P為雙曲線C上異于點(diǎn)A、B的任意一點(diǎn),且直線PA、PB分別與x軸相交于點(diǎn)M、N,求證:為定值(其中O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com