已知f(x)=a2x-2ax+1+2,(a>0,a≠1)的定義域?yàn)閇-1,+∞).
(Ⅰ)若a=2,求y=f(x)的最小值;
(Ⅱ)當(dāng)0<a<1時(shí),若f(x)≤3對(duì)x∈[-1,2]恒成立,求a的范圍.
(Ⅰ)若a=2,f(x)=22x-4×2x+2,x∈[-1,+∞)
令t=2x,g(t)=f(x)=t2-4×t+2=(t-2)2-2,
t∈[
1
2
,+∞)
,∴f(x)的最小值為-2;…(5分)
(Ⅱ)令t=ax,h(t)=f(x)=t2-2at+2≤3?2a≥t-
1
t
…(7分)
當(dāng)0<a<1時(shí),2a≥t-
1
t
t∈[a2
1
a
]
恒成立…(9分)?2a≥[t-
1
t
]max=
1
a
-a?3a≥
1
a
?a≥
3
3
…(11分)
所以a∈[
3
3
,1)
.…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a2x-2ax+1+2,(a>0,a≠1)的定義域?yàn)閇-1,+∞).
(Ⅰ)若a=2,求y=f(x)的最小值;
(Ⅱ)當(dāng)0<a<1時(shí),若f(x)≤3對(duì)x∈[-1,2]恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶八中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知f(x)=a2x-2ax+1+2,(a>0,a≠1)的定義域?yàn)閇-1,+∞).
(Ⅰ)若a=2,求y=f(x)的最小值;
(Ⅱ)當(dāng)0<a<1時(shí),若f(x)≤3對(duì)x∈[-1,2]恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年上海市八校高三聯(lián)考數(shù)學(xué)試卷(松江二中、青浦、七寶、育才、市二、行知、位育)(解析版) 題型:解答題

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)新題型解析選編(4)(解析版) 題型:解答題

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案