已知雙曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為、,點(diǎn)P是第一象限內(nèi)雙曲線上的點(diǎn),且,tan∠PF2F1=-2,則雙曲線的離心率為   
【答案】分析:在△PF1F2中,根據(jù)正弦定理算出PF1=2PF2.根據(jù)tan∠PF1F2=,tan∠PF2F1=-2,結(jié)合三角形內(nèi)角和與兩角和的正切公式,得到tan∠F1PF2值,從而算出cos∠F1PF2值,根據(jù)余弦定理得到+-2PF1•PF2cos∠F1PF2=3.將兩式聯(lián)解即得PF1、PF2的長,從而得到雙曲線的2a值,最后用離心率的公式可求出雙曲線的離心率.
解答:解:∵△PF1F2中,sin∠PF1F2,sin∠PF1F2,
∴由正弦定理得,…①
又∵,tan∠PF2F1=-2,
∴tan∠F1PF2=-tan(∠PF2F1+∠PF1F2)=-=,可得cos∠F1PF2=
△PF1F2中用余弦定理,得+-2PF1•PF2cos∠F1PF2==3,…②
①②聯(lián)解,得,可得,
∴雙曲線的,結(jié)合,得離心率
故答案為:
點(diǎn)評:本題以求雙曲線的離心率為載體,考查正余弦定理解三角形、兩角和的正切公式和雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線-=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為(O為原點(diǎn)),則兩條漸近線的夾角為(    )

A.30°             B.45°              C.60°               D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為(O為原點(diǎn)),則兩條漸近線的夾角為(    )

A.30°                B.45°                   C.60°                  D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的一條漸近線方程是y=x,它的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,則雙曲線的方程為(  )

(A) -=1 (B) -=1

(C) -=1 (D) -=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三聯(lián)合考試數(shù)學(xué)文卷 題型:填空題

已知雙曲線a>0,b>0)的左右焦點(diǎn)分別為F1、 F2 ,P 是雙曲線上的一點(diǎn),且P F1⊥P F2, 的面積為2 ab,則雙曲線的離心率 e=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆吉林省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:選擇題

已知雙曲線(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點(diǎn)為圓C的圓心,則該雙曲線的方程為(    )

(A)    (B)     (C) (D)

 

查看答案和解析>>

同步練習(xí)冊答案