分析 (1)由已知可得AF=$\sqrt{2}$,DE=$\sqrt{2}$,則有DF2+AF2=AD2,則DF⊥AF.再由PA⊥平面ABCD,得DF⊥PA.由線面垂直的判定得DF⊥平面PAF,進(jìn)一步得面PDF⊥面PAF.
(2)取PD的中點(diǎn)O,連接AO,F(xiàn)O,由PA=2,結(jié)合(1)可得OA=OP=OD=OF,則O為球心,解直角三角形求出三棱錐P-ADF外接球的半徑,代入體積公式得答案.
解答 (1)證明:∵AD=2,AB=1,F(xiàn)是BC的中點(diǎn),
∴AF=$\sqrt{2}$,DE=$\sqrt{2}$,
又AD=2,∴DF2+AF2=AD2,則DF⊥AF.
又PA⊥平面ABCD,∴DF⊥PA.
又PA∩AF=A,∴DF⊥平面PAF.
∵DF?面PDF,∴面PDF⊥面PAF;
(2)解:取PD的中點(diǎn)O,連接AO,F(xiàn)O,
由(1)知DF⊥PF,在Rt△PAD與Rt△PFD中,有OA=OP=OD=OF,
∴O為球心.
∵PA=2,AD=2,PD=$2\sqrt{2}$,∴球半徑R=$\sqrt{2}$,
∴三棱錐P-ADF外接球的體積V=$\frac{4}{3}π{R}^{3}=\frac{8\sqrt{2}}{3}π$.
點(diǎn)評(píng) 本題考查平面與平面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了棱錐外接球體積的求法,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1>s2 | B. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1<s2 | C. | $\overline{{x}_{1}}$>$\overline{{x}_{2}}$,s1<s2 | D. | $\overline{{x}_{1}}$>$\overline{{x}_{2}}$,s1>s2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com