在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,b=2,cos(A+B)=
1
4
,則c的值為
 
考點:余弦定理
專題:三角函數(shù)的求值,解三角形
分析:由誘導(dǎo)公式可得cosC,由余弦定理可得.
解答: 解:由題意可得cosC=cos[π-(A+B)]
=-cos(A+B)=-
1
4

∴由余弦定理可得c2=a2+b2-2abcosC
=1+4-2×1×2×(-
1
4
)=6,
∴c=
6

故答案為:
6
點評:本題考查解三角形,涉及余弦定理和誘導(dǎo)公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若用C、R和I分別表示復(fù)數(shù)集、實數(shù)集和純虛數(shù)集,其中C為全集,那么有( 。
A、C=R∪I
B、R∪∁CI=R
C、∁CR=C∩I
D、∁CR∩I=I

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x+
12
3x
(x<0),求函數(shù)f(x)的最大值,以及取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)一個骰子投擲2次,得到的點數(shù)分別為a,b,求直線y=a-b與函數(shù)y=sinx圖象所有交點中相鄰兩個交點的距離都相等的概率.
(Ⅱ)若a是從區(qū)間[0,6]上任取一個數(shù),b是從區(qū)間[0,6]上任取一個數(shù),求直線y=a-b在函數(shù)y=sinx圖象上方的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)0<a<2時,直線l1:ax-2y-2a+4=0與l2:2x+a2y-2a2-4=0和坐標(biāo)軸成一個四邊形,要使圍成的四邊形面積最小,a應(yīng)取何值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x+m在區(qū)間[0,
π
3
]上的最大值為2.
(1)求常數(shù)m的值;
(2)在△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=1,sinB=3sinC,△ABC面積為
9
3
4
,求邊長a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013-2014第二學(xué)年度某校對高一年級課外活動學(xué)生在教室學(xué)習(xí)的情況進(jìn)行了調(diào)查,其中抽查了高一(2)班的50名學(xué)生得到如下2×2列聯(lián)表:
在教室 不在教室 合計
6 24 30
14 6 20
合計 20 30 50
(1)根據(jù)獨立性檢驗的基本思想,約有多大的把握認(rèn)為“在課外活動女生比男生更喜歡讀書”?
(2)若從高一(2)班抽出學(xué)生對老師進(jìn)行問卷調(diào)查,用分層抽樣方法抽取5人,男生與女生各抽多少?
(3)若從抽出的5名學(xué)生中抽出兩名學(xué)生,按照某種方案進(jìn)行抽取所得到的概率是
7
10
.寫出這種方案,并給出計算過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校的自主招生考試設(shè)置了自薦、筆試和面試三個環(huán)節(jié),并規(guī)定某個環(huán)節(jié)通過后才能進(jìn)入下一環(huán)節(jié),且三個環(huán)節(jié)都通過才能被錄。硨W(xué)生A三個環(huán)節(jié)依次通過的概率組成一個公差為
1
8
的等差數(shù)列,且第一個環(huán)節(jié)不通過的概率超過
1
2
,第一個環(huán)節(jié)通過但第二個環(huán)節(jié)不通過的概率為
5
32
,假定每個環(huán)節(jié)學(xué)生是否通過是相互獨立的.
(Ⅰ)求學(xué)生A被錄取的概率;
(Ⅱ)記學(xué)生A通過的環(huán)節(jié)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將集合{1,2,3,4,5,6,7,8}中的元素作全排列,使得除了最左端的這個數(shù)之外,對于其余每個數(shù)n,在n的左邊某個位置上總有一個數(shù)與n之差的絕對值為1,那么,滿足條件的排列個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案