(24)(本小題滿分10分)選修4-5,不等式選講
已知函數(shù).
(Ⅰ)若不等式的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若+對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
法一:①由得,解得。
又已知不等式的解集為,所以,解得a=2.
②當(dāng)a=2時(shí),,設(shè),
于是
所以當(dāng)時(shí),; 當(dāng)時(shí),; 當(dāng)x>2時(shí),。
綜上可得,g(x)的最小值為5。
從而若,即對(duì)一切實(shí)數(shù)x恒成立,
則m的取值范圍為(-∞,5)。………………………………10分
法二:①同法一。
②當(dāng)a=2時(shí),。設(shè)。
由(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),
得的最小值為5。
從而,若,即對(duì)一切實(shí)數(shù)x恒成立。
則m的取值范圍為(-∞,5)。
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(理) 題型:解答題
選做題:請(qǐng)考生在第22,23,24題中任選一題做答,如果多做,則按所做的第一題記分
22.(本小題滿分10分)選修4—1幾何證明選講
如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F。
(I)求證:DE是⊙O的切線;
(II)若的值.
23.(本小題滿分10分)選修4—2坐標(biāo)系與參數(shù)方程
設(shè)直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合, x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為
(I)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(II)求曲線C上的動(dòng)點(diǎn)P到直線l的最大距離。
24.(本小題滿分10分)選修4—5不等式選講
對(duì)于任意的實(shí)數(shù)恒成立,記實(shí)數(shù)M的最大值是m。
(1)求m的值;
(2)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:選擇題
選做題:請(qǐng)考生在第22,23,24題中任選一題做答,如果多做,則按所做的第一題記分
22.(本小題滿分10分)選修4—1幾何證明選講
如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F。
(I)求證:DE是⊙O的切線;
(II)若的值.
23.(本小題滿分10分)選修4—2坐標(biāo)系與參數(shù)方程
設(shè)直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合, x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為
(I)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(II)求曲線C上的動(dòng)點(diǎn)P到直線l的最大距離。
24.(本小題滿分10分)選修4—5不等式選講
對(duì)于任意的實(shí)數(shù)恒成立,記實(shí)數(shù)M的最大值是m。
(1)求m的值;
(2)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.
23(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB=4AN, M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
24.(本小題滿分10分)
將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.
(Ⅰ)若該硬幣均勻,試求與;
(Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.
23(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB=4AN, M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
24.(本小題滿分10分)
將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.
(Ⅰ)若該硬幣均勻,試求與;
(Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較與的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com