【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

(2)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率..

【答案】(1); (2)

【解析】試題分析:(1)利用頻率分布直方圖中的信息,所有矩形的面積和為1,得到a; (2)從評(píng)分在的受訪職工中都在的人數(shù),隨機(jī)抽取2人,列舉法求出所有可能,利用古典概型公式解答.

試題解析:(1)由頻率分布直方圖知,

所以.

該企業(yè)的職工對(duì)該部分評(píng)分不低于80的概率為.

(2)在的受訪職工人數(shù)為,

此2人評(píng)分都在的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解本市居民的生活成本,甲、乙、丙三名同學(xué)利用假期分別對(duì)三個(gè)社區(qū)進(jìn)行了“家庭每月日常消費(fèi)額”的調(diào)查.他們將調(diào)查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),記甲、乙、丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為s1s2、s3,則它們的大小關(guān)系為__________.(用“>”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上是奇函數(shù).

1)求;

2)對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍;

3)令,若關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且A,B,C成等差數(shù)列
(1)若b=2 ,c=2,求△ABC的面積;
(2)若a,b,c成等比數(shù)列,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C 的左焦點(diǎn)F為圓的圓心,且橢圓C上的點(diǎn)到點(diǎn)F的距離最小值為。

I)求橢圓C的方程;

II)已知經(jīng)過(guò)點(diǎn)F的動(dòng)直線與橢圓C交于不同的兩點(diǎn)AB,點(diǎn)M坐標(biāo)為),證明: 為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)函數(shù),若的極值點(diǎn),求的值并討論的單調(diào)性;

(2)函數(shù)有兩個(gè)不同的極值點(diǎn),其極小值為為,試比較的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求同時(shí)滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長(zhǎng)為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)已知常數(shù)解關(guān)于的不等式

(Ⅱ)若函數(shù)的圖象恒在函數(shù)圖象的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,若, 處切線的斜率為

(1)求函數(shù)的解析式及其單調(diào)區(qū)間;

(2)若實(shí)數(shù)滿足,且對(duì)于任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案