已知函數(shù)().
(1)求的單調(diào)區(qū)間;
(2)如果是曲線上的任意一點(diǎn),若以為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;
(3)討論關(guān)于的方程的實(shí)根情況.
(1)單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為;(2)的最小值為;(3)時,方程有兩個實(shí)根,當(dāng)時,方程有一個實(shí)根,當(dāng)時,方程無實(shí)根.
解析試題分析:本題考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值等基礎(chǔ)知識,考查函數(shù)思想,分類討論思想,考查綜合分析和解決問題的能力.第一問,先求導(dǎo)數(shù),令導(dǎo)數(shù)等于0,得到方程的根,則為增函數(shù),為減函數(shù),本問要注意函數(shù)的定義域;第二問,先利用導(dǎo)數(shù)求出切線的斜率,得到恒成立的表達(dá)式,將其轉(zhuǎn)化為對恒成立,所以關(guān)鍵就是求,配方法求最大值即可;第三問,先將原方程化為,設(shè),看函數(shù)圖像與x軸的交點(diǎn),對求導(dǎo),判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,討論最大值的三種情況來決定方程根的情況.
試題解析:(Ⅰ) ,定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/6e/1/1o1v44.png" style="vertical-align:middle;" />,
則.
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/9c/7/q3v7u1.png" style="vertical-align:middle;" />,由得, 由得,
所以的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為. .3分
(Ⅱ)由題意,以為切點(diǎn)的切線的斜率滿足
,
所以對恒成立.
又當(dāng)時, ,
所以的最小值為. .6分
(Ⅲ)由題意,方程化簡得
令,則.
當(dāng)時, ,
當(dāng)時, ,
所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
所以在處取得極大值即最大值,最大值為.
所以當(dāng),即時, 的圖象與軸恰有兩個交點(diǎn),
方程有兩個實(shí)根,
當(dāng)時,的圖象與軸恰有一個交點(diǎn),
方程有一個實(shí)根,
當(dāng)時,的圖象與軸無交點(diǎn),
方程無實(shí)根. 12分
考點(diǎn):1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)求函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
對定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意的,都有,且對任意的都有恒成立,則稱函數(shù)為區(qū)間上的“型”函數(shù).
(1)求證:函數(shù)是上的“型”函數(shù);
(2)設(shè)是(1)中的“型”函數(shù),若不等式對一切的恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的“型”函數(shù),求實(shí)數(shù)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/a0/0/jkeym1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷并證明的單調(diào)性;
(3)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是定義域?yàn)镽的奇函數(shù),,
⑴求實(shí)數(shù)的值;
⑵若在x∈[2,3]上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1) 當(dāng)時,函數(shù)恒有意義,求實(shí)數(shù)a的取值范圍;
(2) 是否存在這樣的實(shí)數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
揚(yáng)州某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅固性及石塊用料等因素,設(shè)計其橫斷面要求面積為平方米,且高度不低于米.記防洪堤橫斷面的腰長為(米),外周長(梯形的上底線段與兩腰長的和)為(米).
⑴求關(guān)于的函數(shù)關(guān)系式,并指出其定義域;
⑵要使防洪堤橫斷面的外周長不超過米,則其腰長應(yīng)在什么范圍內(nèi)?
⑶當(dāng)防洪堤的腰長為多少米時,堤的上面與兩側(cè)面的水泥用料最省(即斷面的外周長最。?求此時外周長的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)若不等式的解集為,求實(shí)數(shù)的值;
(II)在(I)的條件下,若對一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com