【題目】已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足,對任意實數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時,有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表達(dá)式;
(3)在(2)的條件下,設(shè)g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)圖象上的點都位于直線y= 的上方,求實數(shù)m的取值范圍.

【答案】
(1)解:由條件知:f(2)=4a+2b+c≥2成立,

又另取x=2時, 成立,

∴f(2)=2


(2)解:∵ ,∴ ,4a+c=1,

又f(x)≥x恒成立,即ax2+(b﹣1)x+c≥0在R上恒成立,

∴a>0且△=(b﹣1)2﹣4ac≤0,

解得: ,

所以


(3)解:由題意可得:g(x)= + 在[0,+∞)時必須恒成立,即x2+4(1﹣m)x+2>0在[0,+∞)時恒成立,

則有以下兩種情況:

①△<0,即16(1﹣m)2﹣8<0,解得

,解得: ,

綜上所述:


【解析】(1)由已知f(2)≥2成立,又由f(x))≤ (x+2)2成立,得f(2)≤ =2,根據(jù)兩種情況可得f(2)值;f(﹣2)=0,由上述證明知f(2)=2,f(x)的表達(dá)式中有三個未知數(shù),由兩函數(shù)值只能得出兩個方程,再對任意實數(shù)x,都有f(x)≥x,這一恒成立的關(guān)系得到 0,由此可以得到a= ,將此三方程聯(lián)立可解出三個參數(shù)的值,求出f(x)的表達(dá)式;(3)g(x)= + 在[0,+∞)時必須恒成立,即x2+4(1﹣m)x+2>0在x∈[0,+∞)恒成立.轉(zhuǎn)化為二次函數(shù)圖象與x軸在x∈[0,+∞)無交點的問題,由于g(x)的單調(diào)性不確定,故本題要分兩種情況討論,一種是對稱軸在y軸右側(cè),此時需要判別式小于0,一類是判別式大于0,對稱軸小于0,且x=0處的函數(shù)值大于等于0,轉(zhuǎn)化出相應(yīng)的不等式求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是定義在(﹣∞,+∞)上的奇函數(shù),且滿足
(1)求實數(shù)a,b,并確定函數(shù)f(x)的解析式
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (b>0)的離心率為,A(,0), B(0,b)O(0,0),OAB的面積為1.

(1)求橢圓C的方程;

(2)設(shè)P是橢圓C上一點,直線PAy軸交于點M,直線PBx軸交于點N.求證:|AN|·|BM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:(x+1)(x﹣5)≤0,命題q:1﹣m≤x<1+m(m>0).
(1)若p是q的充分條件,求實數(shù)m的取值范圍;
(2)若m=5,“p∨q”為真命題,“p∧q”為假命題,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,并根據(jù)

(1)寫出函數(shù)f(x)(x∈R)的增區(qū)間;
(2)寫出函數(shù)f(x)(x∈R)的解析式;
(3)若函數(shù)g(x)=f(x)﹣2ax+2(x∈[1,2]),求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,根據(jù)圖象:

(1)寫出函數(shù)f(x),x∈R的增區(qū)間并將圖象補(bǔ)充完整;
(2)寫出函數(shù)f(x),x∈R的解析式;
(3)若函數(shù)g(x)=f(x)﹣4ax+2,x∈[1,3],求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示相等函數(shù)的一組是(
A.f(x)=|x|,
B. ,
C. ,g(x)=x+1
D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲乙兩船,其中甲船在某島B的正南方A處,A與B相距7公里,甲船自A處以4公里/小時的速度向北方向航行,同時乙船以6公里/小時的速度自B島出發(fā),向北60°西方向航行,問分鐘后兩船相距最近.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求的值;

(2)若對任意的,都有成立,求的取值范圍;

(3)若函數(shù)的兩個零點為,試判斷的正負(fù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案