(本題滿分12分)

    如圖,已知橢圓的中心在坐標(biāo)原點,焦點在軸上,它的一個頂點為,且離心率等于,過點的直線與橢圓相交于不同兩點,點在線段上。

   (1)求橢圓的標(biāo)準(zhǔn)方程;

   (2)設(shè),若直線軸不重合,

試求的取值范圍。

 

【答案】

.解(1)設(shè)橢圓的標(biāo)準(zhǔn)方程是。

由于橢圓的一個頂點是,故,根據(jù)離心率是得,,解得。

所以橢圓的標(biāo)準(zhǔn)方程是。 ........... (4分)

(2)設(shè)。

設(shè)直線的方程為,與橢圓方程聯(lián)立消去

,根據(jù)韋達定理得,8分

,得,整理得,

把上面的等式代入得,又點在直線上,所以,

于是有.....(10分)

,由,得,

.綜上所述。。,....(12分)

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案