公比不為1的等比數(shù)列{an}中,a6和a8是方程x2+9x+12=0的兩根,則a7

[  ]

A.

B.3

C.±3

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2-x+n
x2+x+1
,(x∈R,且x≠
n-1
2
,n∈N*)
的最小值為an,最大值為bn,記cn=(1-an)(1-bn),則數(shù)列{cn}為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,an+1=
an
c-an+1
(c為常數(shù),n∈N*)且a1,a2,a5成公比不為1的等比數(shù)列.
(1)求證:數(shù)列{
1
an
}是等差數(shù)列
(2)求c的值
(3)設(shè)bn=an•an+1,數(shù)列{bn}的前n項(xiàng)和為Sn,證明:Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•連云港二模)已知函數(shù)f(x)=kx+m,當(dāng)x∈[a1,b1]時(shí),f(x)的值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí),f(x)的值域?yàn)閇a3,b3],依此類推,一般地,當(dāng)x∈[an-1,bn-1]時(shí),f(x)的值域?yàn)閇an,bn],其中k、m為常數(shù),且a1=0,b1=1.
(1)若k=1,求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若k>0且k≠1,問(wèn)是否存在常數(shù)m,使數(shù)列{bn}是公比不為1的等比數(shù)列?請(qǐng)說(shuō)明理由;
(3)若k<0,設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,求(T1+T2+…+T2008)-(S1+S2+…+S2008).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•長(zhǎng)寧區(qū)二模)已知函數(shù)f(x)=ax+b,當(dāng)x∈[a1,b1]時(shí),值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí),值域?yàn)閇a3,b3],…當(dāng)x∈[an-1,bn-1]時(shí),值域?yàn)閇an,bn],…其中a,b為常數(shù),a1=0,b1=1.
(1)若a=1,求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若a>0,a≠1,要使數(shù)列{bn}是公比不為1的等比數(shù)列,求b的值;并求此時(shí)[a1,b1]∪[a2,b2]∪…∪[an,bn];
(3)若a>0,設(shè)數(shù)列{an}與{bn}的前n項(xiàng)和分別為Sn和Tn,求(T1+T2+…+T2008)-(S1+S2+…+S2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知無(wú)窮數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=A
a
2
n
+Ban+C
,其中A、B、C是常數(shù).
(1)若A=0,B=3,C=-2,求數(shù)列{an}的通項(xiàng)公式;
(2)若A=1,B=
1
2
,C=
1
16
,且an>0,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)試探究A、B、C滿足什么條件時(shí),數(shù)列{an}是公比不為-1的等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案