設(shè)函數(shù)f(x)=
x2-x+n
x2+x+1
,(x∈R,且x≠
n-1
2
,n∈N*)
的最小值為an,最大值為bn,記cn=(1-an)(1-bn),則數(shù)列{cn}為( 。
分析:先利用判別式法求出函數(shù)的值域,從而求出an與bn,代入cn=(1-an)(1-bn),然后判定數(shù)列{cn}的規(guī)律.
解答:解:令y=f(x)=
x2-x+n
x2+x+1
(x∈R,x≠
n-1
2
,x∈N*),
則y(x2+x+1)=x2-x+n,
整理得:(y-1)x2+(y+1)x+y-n=0,
△=(y+1)2-4(y-1)(y-n)≥0,
解得:
3+2n-2
n2+1
3
≤y≤
3+2n+2
n2+1
3

∴f(x)的最小值為an=
3+2n-2
n2+1
3

最大值為bn=
3+2n+2
n2+1
3
,
∴cn=(1-an)(1-bn)=-
4
3

∴數(shù)列{cn}是常數(shù)數(shù)列
故選A.
點(diǎn)評(píng):本題主要考查了分式函數(shù)的值域,以及數(shù)列的判定,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)p1,p2,…,pn均為正數(shù)時(shí),稱
n
p1+p2+…+pn
為p1,p2,…,pn的“均倒數(shù)”.已知數(shù)列{an}的各項(xiàng)均為正數(shù),且其前n項(xiàng)的“均倒數(shù)”為
1
2n+1

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=
an
2n+1
(n∈N*),試比較cn+1與cn的大。
(3)設(shè)函數(shù)f(x)=-x2+4x-
an
2n+1
,是否存在最大的實(shí)數(shù)λ,使當(dāng)x≤λ時(shí),對(duì)于一切正整數(shù)n,都有f(x)≤0恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,(x<0)
-x+3,(x≥0)
,且f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式; 
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間.
(3)若方程f(x)=k有兩個(gè)不等的實(shí)數(shù)根,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,角A,B,C所對(duì)邊長(zhǎng)分別是a,b,c,設(shè)函數(shù)f(x)=x2+bx-
1
4
為偶函數(shù),且f(cos
B
2
)=0

(1)求角B的大小;
(2)若△ABC的面積為
3
4
,其外接圓的半徑為
2
3
3
,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,-4≤x<0
-x+3,0≤x≤4
,且f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并寫出函數(shù)f(x)的定義域、值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2-x+n
x2+x+1
(x∈R,x≠
n-1
2
,x∈N*)
,f(x)的最小值為an,最大值為bn,記cn=(1-an)(1-bn
則數(shù)列{cn}是
常數(shù)
常數(shù)
數(shù)列.(填等比、等差、常數(shù)或其他沒有規(guī)律)

查看答案和解析>>

同步練習(xí)冊(cè)答案