設(shè)a,b為實常數(shù),k取任意實數(shù)時,y=(k2+k+1)x2-2(a+k2)x+(k2+3ak+b)的圖象與x軸都交于點A(1,0).求a,b的值;若函數(shù)與x軸的另一個交點為B,當(dāng)k變化時,求|AB|的最大值.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由y=(k2+k+1)x2-2(a+k2)x+(k2+3ak+b)的圖象與x軸都交于點A(1,0),代入可得∴(k2+k+1)-2(a+k2)+(k2+3ak+b)=0恒成立,進而可得1-a=0且1+b-2a2=0,解方程可得a,b的值;設(shè)B為(m,0),則|AB|=|m-1|,利用韋達定理可得1×m=
k2+3k+1
k2+k+1
,即(1-m)k2+(3-m)k+(1-m)=0有實根,根據(jù)△≥0構(gòu)造關(guān)于m的不等式,求出m的取值范圍,可得答案.
解答: 解:∵k取任意實數(shù)時,y=(k2+k+1)x2-2(a+k2)x+(k2+3ak+b)的圖象與x軸都交于點A(1,0).
∴(k2+k+1)-2(a+k2)+(k2+3ak+b)=0恒成立,
∴k(1-a)+1+b-2a2=0恒成立,
∴1-a=0且1+b-2a2=0
解得a=1,b=1
設(shè)B為(m,0),則|AB|=|m-1|.
∵m、1是(k2+k+1)x2-2(1+k2)x+(k2+3k+1)=0 的兩根,
∴1×m=
k2+3k+1
k2+k+1

即(1-m)k2+(3-m)k+(1-m)=0有實根
∵△=(3-m)2-4(1-m)2≥0
即3m2-2m-5≤0
解得-2≤m-1≤
2
3

∴|AB|=|m-1|≤2,當(dāng)k=-1時,等號成立.
∴|AB|的最大值為2.
點評:本題考查的知識點是二次函數(shù)的圖象和性質(zhì),函數(shù)圖象過定點,韋達定理,一元二次方程根與系數(shù)的關(guān)系,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,綜合性強,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

AB是過拋物線x2=y的焦點一條弦,若AB的中點到x軸的距離為1,則弦AB的長度為( 。
A、
5
2
B、
5
4
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
A、已知a、b為異面直線,過空間中不在a、b上的任意一點,可以作一個平面與a、b都平行
B、在二面角α-l-β的兩個半平面α、β內(nèi)分別有直線a、b,則二面角α-l-β是直二面角的充要條件是α⊥β或b⊥a
C、已知異面直線a與b成60°,分別在a、b上的線段AB與CD的長分別為4和2,AC、BD 的中點分別為E、F,則EF=
3
D、正三棱錐的內(nèi)切球的半徑為1,則此正三棱錐的體積最小值8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)-2sin2x+1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:ax-y-1=0與曲線C:x2-2y2=1交于P、Q兩點,
(1)當(dāng)實數(shù)a為何值時,|PQ|=2
1+a2

(2)是否存在a的值,使得以PQ為直徑的圓經(jīng)過原點?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,四個頂點所圍成菱形的面積為8
2

(Ⅰ)求橢圓的方程;
(Ⅱ)若A、B兩點在橢圓C上,坐標(biāo)原點為O,且滿足kOA•kOB=-
1
2
,
(i)求
.
OA
.
OB
的取值范圍;
(ii)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=2px(p>0)的焦點F以及橢圓C2
y2
a2
+
x2
b2
=1(a>b>0)的上、下焦點及左、右頂點均在圓O:x2+y2=1上.
(1)求拋物線C1和橢圓C2的標(biāo)準(zhǔn)方程;
(2)過點F的直線交拋物線C1于A,B兩不同點,交y軸于點N,已知
NA
=λ1
AF
,
NB
=λ2
BF
,則λ12是否為定值?若是,求出其值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足
a+c
b
=
sinA-sinB
sinA-sinC

(1)求角C;
(2)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域為R,若對于給定的正數(shù)k,定義函數(shù)fk(x)=
k,f(x)≤k
f(x),f(x)>k
則當(dāng)函數(shù)f(x)=
1
x
,k=1時,定積分
2
1
4
fk(x)dx的值為
 

查看答案和解析>>

同步練習(xí)冊答案