已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ) 若存在實數(shù),使得
成立,求實數(shù)
的取值范圍.
(Ⅰ)的單調(diào)遞減區(qū)間是
,單調(diào)遞增區(qū)間是
.
(Ⅱ) ().
解析試題分析:(Ⅰ)
(�。┊�(dāng)時,
的單調(diào)遞增區(qū)間是(
).
(ⅱ) 當(dāng)時,令
得
當(dāng)時,
當(dāng)
時,
的單調(diào)遞減區(qū)間是
,
的單調(diào)遞增區(qū)間是
. 6分
(Ⅱ)由,
由得
.
設(shè)
,若存在實數(shù)
,使得
成立, 則
10分
由
得
,
當(dāng)
時,
當(dāng)
時,
在
上是減函數(shù),在
上是增函數(shù).
的取值范圍是(
). 14分
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極(最)值,研究函數(shù)的圖象和性質(zhì),不等式恒成立問題。
點(diǎn)評:難題,不等式恒成立問題,常常轉(zhuǎn)化成求函數(shù)的最值問題。(II)小題,通過構(gòu)造函數(shù),研究函數(shù)的單調(diào)性、極值(最值),進(jìn)一步確定得到參數(shù)的范圍。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求曲線在點(diǎn)
處的切線方程;
(2)求的單調(diào)區(qū)間.
(3)設(shè),如果過點(diǎn)
可作曲線
的三條切線,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)。
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)
的單調(diào)性;
(3)斜率為的直線與曲線
交于
,
兩點(diǎn),求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若x=1時取得極值,求實數(shù)
的值;
(2)當(dāng)時,求
在
上的最小值;
(3)若對任意,直線
都不是曲線
的切線,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)在
上為增函數(shù),求實數(shù)
的取值范圍;
(2)當(dāng)時,求
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)設(shè)函數(shù),
.求函數(shù)
的單調(diào)遞減區(qū)間;
(2)證明函數(shù)在
上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求曲線在點(diǎn)
處的切線方程;
(2)設(shè),如果過點(diǎn)
可作曲線
的三條切線,證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com