分析 根據(jù)雙曲線的標準方程可得:a=3,b=$\sqrt{6}$,再由雙曲線的定義可得:|AF2|-|AF1|=2a=6,|BF2|-|BF1|=2a=6,所以得到|AF2|+|BF2|-(|AF1|+|BF1|)=12,再根據(jù)A、B兩點的位置特征得到答案.
解答 解:根據(jù)雙曲線$\frac{x^2}{9}-\frac{y^2}{6}=1$,得:a=3,b=$\sqrt{6}$,
由雙曲線的定義可得:|AF2|-|AF1|=2a=6…①,
|BF2|-|BF1|=2a=6…②,
①+②可得:|AF2|+|BF2|-(|AF1|+|BF1|)=12,
∵過雙曲線的左焦點F1的直線交雙曲線的左支于A,B兩點,
∴|AF1|+|BF1|=|AB|,當|AB|是雙曲線的通徑時|AB|最。
∴|AF2|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=12.
|BF2|+|AF2|=|AB|+12≥$\frac{2^{2}}{a}$+12=$\frac{2×6}{3}$+12=16.
故答案為:16.
點評 本題考查兩條線段和的最小值的求法,是中檔題,解題時要注意雙曲線的簡單性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | log23 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 39 | B. | 40 | C. | 41 | D. | 42 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1} | B. | {1} | C. | {-1,0,1,2} | D. | {1,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com