如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點(diǎn),P是CD上的點(diǎn).
(Ⅰ)求證:直線PE∥平面A1BF;
(Ⅱ)求二面角D―EC―A的大小;
(Ⅲ)求直線PE與平面A1BF的距離.
解:(Ⅰ)證明:連又, ∴ (Ⅱ)(法則一)取AC中點(diǎn)M,連DM,則DM∥BC,又BC⊥AC,∴DM⊥AC, ∵平面A1ACC1⊥底面ABC,且平面A1ACC1∩底面ABC=AC,∴DM⊥平面EAC. 作MN⊥EC,連DN,據(jù)三垂線定理,得CE⊥DN,∴∠DNM為所求二面角的平面角. 在Rt△EDC中,. 在Rt△DMN中,, ∴,即所求二面角的平面角 的大小為. (法則二)以C為坐標(biāo)原點(diǎn),CA、CB、CC1分別為x、y、z軸建立如圖所示的坐標(biāo)系,則C(0,0,0),D(1,1,0),E(2,0,1),=(1,1,0),, 設(shè)平面EDC的法向量為, 則由, 令x=1,則y=-1,z=-2,故法向量 ,又平面ECA的一個(gè)法向量為 ,∴, ∴二面角D―EC―A的大小為. (Ⅲ)(法一)由(1)可知,直線PE與平面A1BF的距離等于兩平行平面EDC與A1BF的距離,即點(diǎn)A1到平面EDC的距離,亦即A到平面EDC的距離,設(shè)A到平面EDC的距離為h,又CD⊥AB,而A1ABB1⊥平面ABC,且A1ABB1∩平面ABC=AB,∴CD⊥平面A1ABB1,∴CD⊥ED,即△CED為直角三角形. 由, |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]
P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com