【題目】某電動汽車“行車數(shù)據(jù)”的兩次記錄如下表:

記錄時(shí)間

累計(jì)里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

2019年1月1日

4000

0.125

280

2019年1月2日

4100

0.126

146

(注:累計(jì)里程指汽車從出廠開始累計(jì)行駛的路程,累計(jì)耗電量指汽車從出廠開始累計(jì)消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對該車在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是

A. 等于12.5B. 12.5到12.6之間

C. 等于12.6D. 大于12.6

【答案】D

【解析】

根據(jù)累計(jì)耗電量的計(jì)算公式,即可求解.

由題意,可得,

所以對該車在兩次記錄時(shí)間段內(nèi)行駛100公里的耗電量估計(jì)正確的是:大于12.6,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx=,若對任意給定的m∈(1,+∞),都存在唯一的x0R滿足ffx0))=2a2m2+am,則正實(shí)數(shù)a的取值范圍為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),對任意的a,bR,都有f(ab)f(a)f(b)1,并且當(dāng)x<0時(shí),f(x)>1.

(1)求證:f(x)R上的減函數(shù);

(2)f(6)7,解不等式f(3m22m2)<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為, , 為橢圓的上頂點(diǎn), 為等邊三角形,且其面積為為橢圓的右頂點(diǎn).

Ⅰ)求橢圓的方程;

Ⅱ)若直線與橢圓相交于兩點(diǎn)(不是左、右頂點(diǎn)),且滿足,試問:直線是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo),否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)loga(x1)(a0,且a≠1)

(1)求函數(shù)f(x)的解析式;

(2)若-1f(1)1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=若函數(shù)f (x)的圖象與直線yx有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的取值集合為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3-ax2,aR.

(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;

(2)設(shè)函數(shù)g(x)=f(x)+(x-a)cos x-sin x,討論g(x)的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過點(diǎn)M0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-,0),B(,0),直線MA,MB交于點(diǎn)M,它們的斜率之積為常數(shù)m(m≠0),且△MAB的面積最大值為,設(shè)動點(diǎn)M的軌跡為曲線E.

(1)求曲線E的方程;

(2)過曲線E外一點(diǎn)QE的兩條切線l1,l2,若它們的斜率之積為-1,那么·是否為定值?若是,請求出該值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案