已知直線和點(diǎn),點(diǎn)為第一象限內(nèi)的點(diǎn)且在直線上,直線交軸正半軸于點(diǎn),求△面積的最小值,并求當(dāng)△面積取最小值時(shí)的的坐標(biāo)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(本小題滿分14分)
如圖,在邊長為10的正三角形紙片ABC的邊AB,AC上分別取D,E兩點(diǎn),使沿線段DE折疊三角形紙片后,頂點(diǎn)A正好落在邊BC上(設(shè)為P),在這種情況下,求AD的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:,直線:.
(1)當(dāng)為何值時(shí),直線與圓C相切;
(2)當(dāng)直線與圓C相交于A、B兩點(diǎn),且時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(7分)已知定點(diǎn),動(dòng)點(diǎn)在直線上運(yùn)動(dòng),當(dāng)線段最短時(shí),求的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)已知直線l:kx-y+1+2k=0.
(1)求證:直線l恒過某個(gè)定點(diǎn);
(2)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時(shí)直線l的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 已知兩條直線l1: ax-by+4=0和l2: (a-1)x+y+b="0," 求滿足下列條件的a, b的值.
(1)l1⊥l2, 且l1過點(diǎn)(-3, -1);
(2)l1∥l2, 且坐標(biāo)原點(diǎn)到這兩條直線的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
直線x-y+m=0與圓x2+y2-2x-1=0有兩個(gè)不同的交點(diǎn)的一個(gè)充分不必要條件為( ).
A.m<1 | B.-3<m<1 | C.-4<m<2 | D.0<m<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線上一點(diǎn)M(1,1),動(dòng)弦ME、MF分別交軸與A、B兩點(diǎn),且MA=MB。證明:直線EF的斜率為定值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com