【題目】已知函數(shù),

(Ⅰ)判斷函數(shù)在區(qū)間上零點的個數(shù);

(Ⅱ)設函數(shù)在區(qū)間上的極值點從小到大分別為.證明:

i;

ii)對一切成立.

【答案】(Ⅰ)兩個;(Ⅱ)(i)詳見解析;(ii)詳見解析.

【解析】

(Ⅰ)分別在、三段區(qū)間內利用導數(shù)求得函數(shù)的單調性,結合零點存在定理確定零點個數(shù);

(Ⅱ)(i)根據(jù)(Ⅰ)中結論可知,化簡,根據(jù)單調性可證得結論;

ii)由(i)的方法可證得,分別在為奇數(shù)和為偶數(shù)兩種情況下,采取分組求和的方式,相鄰兩項配對,即可證得結論.

(Ⅰ),

時,,,,無零點;

時,,單調遞減,

,,有唯一零點;

時,,,

,有唯一零點;

綜上所述:有兩個零點.

(Ⅱ)(i,

由(Ⅰ)知:無極值點;在有極小值點,即為,在有極大值點即為

,,,

可知,,

同理在有極小值點,…,在有極值點

得:,

,,

,,故有,

是增函數(shù),,

;

ii)由(i)知:,

,

遞增得:

為偶數(shù)時,不妨設,從開始相鄰兩項配對,每組和均為負值,

,結論成立;

為奇數(shù)時,設

,,

開始相鄰兩項配對,每組和均為負值,還多出最后一項也是負值,

,結論也成立.

綜上,對一切,成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后的函數(shù)圖象.

給出下列四種說法:

①圖(2)對應的方案是:提高票價,并提高成本;

②圖(2)對應的方案是:保持票價不變,并降低成本;

③圖(3)對應的方案是:提高票價,并保持成本不變;

④圖(3)對應的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調性;

2)對任意,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中錯誤的是( )

A. 命題“若,則”的逆否命題是真命題

B. 命題“”的否定是“

C. 為真命題,則為真命題

D. 已知,則“”是“”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)證明:在區(qū)間上有且僅有個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的參數(shù)方程為為參數(shù)),以直角坐標系的原點o為極點,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程是:

(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程:

(Ⅱ)點P是曲線C上的動點,求點P到直線l距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學使用某品牌暖水瓶,其內膽規(guī)格如圖所示.若水瓶內膽壁厚不計,且內膽如圖分為①②③④四個部分,它們分別為一個半球、一個大圓柱、一個圓臺和一個小圓柱體.若其中圓臺部分的體積為,且水瓶灌滿水后蓋上瓶塞時水溢出.記蓋上瓶塞后,水瓶的最大盛水量為,

1)求;

2)該同學發(fā)現(xiàn):該品牌暖水瓶盛不同體積的熱水時,保溫效果不同.為了研究保溫效果最好時暖水瓶的盛水體積,做以下實驗:把盛有最大盛水量的水的暖水瓶倒出不同體積的水,并記錄水瓶內不同體積水在不同時刻的水溫,發(fā)現(xiàn)水溫(單位:℃)與時刻滿足線性回歸方程,通過計算得到下表:

倒出體積

0

30

60

90

120

擬合結果

倒出體積

150

180

210

450

擬合結果

注:表中倒出體積(單位:)是指從最大盛水量中倒出的那部分水的體積.其中:

.對于數(shù)據(jù),可求得回歸直線為,對于數(shù)據(jù),可求得回歸直線為

(。┲赋的實際意義,并求出回歸直線的方程(參考數(shù)據(jù):);

(ⅱ)若的交點橫坐標即為最佳倒出體積,請問保溫瓶約盛多少體積水時(盛水體積保留整數(shù),且3.14)保溫效果最佳?

附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設直線l不經過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為垛積術”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,48,14,23,3654,則該數(shù)列的第19項為( )(注:

A.1624B.1024C.1198D.1560

查看答案和解析>>

同步練習冊答案