已知集合A=
, 方程:
表示焦點在
軸上的橢圓,則這樣的不同橢圓的個數(shù)是
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)已知橢圓W的中心在原點,焦點在
軸上,離心率為
,兩條準線間的距離為6. 橢圓W的左焦點為
,過左準線與
軸的交點
任作一條斜率不為零的直線
與橢圓W交于不同的兩點
、
,點
關(guān)于
軸的對稱點為
.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證:
(
);
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)雙曲線
與橢圓
有相同的焦點,直線
是雙曲線
的
一條漸近線.
(1)求雙曲線
的方程;
(2)已知過點
的直線
與雙曲線
交于
、
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)若橢圓
:
的離心率等于
,拋物線
:
的焦點在橢圓的頂點上。
(1)求拋物線
的方程;
(2)求過點
的直線
與拋物線
交
、
兩點,又過
、
作拋物線
的切線
、
,當(dāng)
時,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率是
,右焦點
到上頂點的距離為
,點
是線段
上的一個動點.
(1)求橢圓的方程;
(2)是否存在過點
且與
軸不垂直的直線
與橢圓交于
、
兩點,使得
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)中心在原點的橢圓離心率為
e,左、右兩焦點分別為
F1、
F2,拋物線
以
F2為焦點,點
P為拋物線和橢圓的一個交點,若
PF2與
x軸成45°,則
e的值為
▲ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
的左焦點
,右頂點A,上頂點B,且
,則橢圓的離心率是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知正方形
,則以
為焦點,且過
兩點的橢圓的離心率為______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的兩焦點為
,現(xiàn)將坐標平面沿
軸折成二面角,二面角的度數(shù)為
,已知折起后兩焦點的距離
,則滿足題設(shè)的一組數(shù)值:
(只需寫出一組就可以,不必寫出所有情況)
查看答案和解析>>