【題目】①一個(gè)命題的逆命題為真,它的否命題也一定為真;
②在中,“”是“三個(gè)角成等差數(shù)列”的充要條件.
③是的充要條件;
④命題“不等式x2+x-6>0的解為x<-3或x>2”的逆否命題是“若-3≤x≤2,則x2+x-6≤0”
以上說法中,判斷錯(cuò)誤的有___________.
【答案】③
【解析】
由四種命題的關(guān)系及充分必要條件,利用原命題與其逆否命題同真同假,命題的逆否命題的形式等知識(shí)逐一檢驗(yàn)即可.
解:對(duì)于①,因?yàn)樵}的逆命題與否命題互為逆否命題,所以一個(gè)命題的逆命題為真,它的否命題也一定為真;即①正確,
對(duì)于②,因?yàn)樵?/span>中,“”的充要條件為“”,即“”,即“三個(gè)角成等差數(shù)列”,故②正確;
對(duì)于③,由,不妨取,不能推出,即不是的充要條件,即③錯(cuò)誤;
對(duì)于④,由命題的逆否命題的形式可得,先將條件與結(jié)論互換,再同時(shí)否定即可,即命題“不等式x2+x-6>0的解為x<-3或x>2”的逆否命題是“若-3≤x≤2,則x2+x-6≤0”,即④正確,
綜上:以上說法中,判斷錯(cuò)誤的有③,
故答案為:③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為4,E、F分別是棱AB、的中點(diǎn),聯(lián)結(jié)EF、、、E、E、E.
求三棱錐的體積;
求直線與平面所成角的大小結(jié)果用反三角函數(shù)值表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項(xiàng)均不為零.設(shè)數(shù)列的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn, 且 .
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列;
(3)若對(duì)任意的恒成立,求實(shí)數(shù)的所有值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項(xiàng)為,設(shè)其前n項(xiàng)和為,且對(duì)有,.
(1)設(shè),求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;
(3)是否存在正整數(shù)m,k,使得,,成等差數(shù)列?若存在,求出m,k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
Ⅰ當(dāng)時(shí),求函數(shù)的最小值;
Ⅱ若對(duì)任意,恒有成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如,在不超過13的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和為偶數(shù)的概率是________(用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的最小值.
(Ⅱ)若在區(qū)間上有兩個(gè)極值點(diǎn),
(i)求實(shí)數(shù)的取值范圍;
(ii)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}滿足a1+a4=18,a2+a5=36.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=an+log2an,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com