精英家教網 > 高中數學 > 題目詳情
若數列{an}滿足a1=1,
an+1
an
=
n+1
n
,則此數列是( 。
A、等差數列
B、等比數列
C、既是等差數列又是等比數列
D、既非等差數列又非等比數列
分析:根據題意可得:an=(
a2
a1
• 
a3
a2
• 
a4
a3
… 
an
an-1
)•a1
=n,再利用等差數列的定義進行證明即可.
解答:解:因為
an+1
an
=
n+1
n
,
所以
a2
a1
=
2
1
,
a3
a2
=
3
2
a4
a3
=
4
3
an
an-1
=
n
n-1
,
所以an=(
a2
a1
• 
a3
a2
• 
a4
a3
… 
an
an-1
)•a1
=n,
所以an=n,an-1=n-1,所以an-an-1=1,所以數列{an}是等差數列.
故選A.
點評:本題主要考查了數列的遞推式.解題的關鍵是從遞推式中找到規(guī)律,進而求得數列的通項公式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列關于數列的命題中,正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•煙臺二模)若數列{an}滿足an+12-
a
2
n
=d
(d為正常數,n∈N+),則稱{an}為“等方差數列”.甲:數列{an}為等方差數列;乙:數列{an}為等差數列,則甲是乙的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•三明模擬)若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區(qū)間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于
1
m
,那么正數m的最小取值是(  )

查看答案和解析>>

科目:高中數學 來源:2013年福建省三明市高三質量檢查數學試卷(解析版) 題型:選擇題

若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區(qū)間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于,那么正數m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中數學 來源:2012年福建省三明市普通高中畢業(yè)班質量檢查數學試卷(理科)(解析版) 題型:選擇題

若數列{an}滿足a≤an≤b,其中a、b是常數,則稱數列{an}為有界數列,a是數列{an}的下界,b是數列{an}的上界.現要在區(qū)間[-1,2)中取出20個數構成有界數列{bn},并使數列{bn}有且僅有兩項差的絕對值小于,那么正數m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步練習冊答案