18.函數(shù)f(x)=3sin(πx)-$\frac{1}{1-x}$,x∈[-3,5]的所有零點(diǎn)之和為8.

分析 設(shè)t=1-x,則x=1-t,原函數(shù)可化為g(t)=2sinπt-$\frac{1}{t}$,由于g(x)是奇函數(shù),觀察函數(shù)y=2sinπt與y=$\frac{1}{t}$的圖象可知,在[-3,5]上,兩個(gè)函數(shù)的圖象有8個(gè)不同的交點(diǎn),其橫坐標(biāo)之和為0,從而 x1+x2+…+x7+x8的值.

解答 解:設(shè)t=1-x,則x=1-t,原函數(shù)可化為:x∈[-3,5],
g(t)=2sin(π-πt)-$\frac{1}{t}$=2sinπt-$\frac{1}{t}$,其中,t∈[-4,4],
因g(-t)=-g(t),
故g(t) 是奇函數(shù),觀察函數(shù) y=2sinπt(紅色部分)
與曲線y=$\frac{1}{t}$ (藍(lán)色部分)的圖象可知,
在t∈[-3,3]上,兩個(gè)函數(shù)的圖象有8個(gè)不同的交點(diǎn),
其橫坐標(biāo)之和為0,即t1+t2+…+t7+t8=0,
從而x1+x2+…+x7+x8=8,
故答案為:8.

點(diǎn)評 本題主要考查正弦函數(shù)的圖象特征,函數(shù)的零點(diǎn)與方程的根的關(guān)系,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若10件產(chǎn)品中有7件正品,3件次品,從中任取2件,則恰好取到1件次品的概率是(  )
A.$\frac{3}{7}$B.$\frac{7}{15}$C.$\frac{8}{15}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某單位有職工100人,不到35歲的有45人,35歲到49歲的25人,剩下的為50歲以上的人,現(xiàn)在抽取20人,按年齡段進(jìn)行分層抽樣,50歲以上應(yīng)抽取的人數(shù)為6人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在三棱臺ABC-DEF中,AB=BC=AC=2,AD=DF=FC=1,N為DF的中點(diǎn),二面角D-AC-B的大小為$\frac{2π}{3}$.
(Ⅰ)證明:AC⊥BN;
(Ⅱ)求直線AD與平面BEFC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知扇形的周長為30厘米,它的面積的最大值為$\frac{225}{4}$;此時(shí)它的圓心角α=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)(3,1)和(-4,6)在直線3x-2y+a=0的兩側(cè),則a的取值范圍是(  )
A.-7<a<24B.a=7 或 a=24C.a<-7或 a>24D.-24<a<7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={x|x2-5x+6<0},B={x|2x-5>0},則A∩B=( 。
A.$(-3,-\frac{5}{2})$B.$(2,\frac{5}{2})$C.$(\frac{5}{2},3)$D.$(-3,\frac{5}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,若分別輸入1,2,3,則輸出的值的集合為( 。
A.{1,2}B.{1,3}C.{2,3}D.{1,3,9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知平行四邊形ABCD中,AB=2,E為AB的中點(diǎn),且△ADE是等邊三角形,沿DE把△ADE折起至A1DE的位置,使得A1C=2.

(1)F是線段A1C的中點(diǎn),求證:BF∥平面A1DE;
(2)求證:A1D⊥CE;
(3)求點(diǎn)A1到平面BCDE的距離.

查看答案和解析>>

同步練習(xí)冊答案