設(shè)函數(shù)f(x)=
2x,                           -2≤x<0
g(x)-log5(x+
5+x2
) ,    0<x≤2
,若f(x)為奇函數(shù),則當(dāng)0<x≤2時(shí),g(x)的最大值是______.
由于f(x)為奇函數(shù),
當(dāng)-2≤x<0時(shí),f(x)=2x有最小值為f(-2)=2-2=
1
4

故當(dāng)0<x≤2時(shí),f(x)=g(x)-log5(x+
5+x2
)有最大值為f(2)=-
1
4
,
而當(dāng)0<x≤2時(shí),y=log5(x+
5+x2
)為增函數(shù),
考慮到g(x)=f(x)+log5(x+
5+x2
),
∵0<x≤2時(shí),f(x)與y=log5(x+
5+x2
)在x=2時(shí)同時(shí)取到最大值,
故[g(x)]max=f(2)+log5(2+
5+22
)=-
1
4
+1=
3
4

答案:
3
4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、設(shè)函數(shù)f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定實(shí)數(shù)a(a≠
12
),設(shè)函數(shù)f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導(dǎo)數(shù)f′(x)的圖象為C1,C1關(guān)于直線y=x對稱的圖象記為C2
(Ⅰ)求函數(shù)y=f′(x)的單調(diào)區(qū)間;
(Ⅱ)對于所有整數(shù)a(a≠-2),C1與C2是否存在縱坐標(biāo)和橫坐標(biāo)都是整數(shù)的公共點(diǎn)?若存在,請求出公共點(diǎn)的坐標(biāo);若不若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(2x+1)(3x+a)
x
為奇函數(shù),則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-2x+m2x+n
(m、n為常數(shù),且m∈R+,n∈R).
(Ⅰ)當(dāng)m=2,n=2時(shí),證明函數(shù)f(x)不是奇函數(shù);
(Ⅱ)若f(x)是奇函數(shù),求出m、n的值,并判斷此時(shí)函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案