【題目】如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
【答案】(1) .(2) .
【解析】試題分析:(1)先根據(jù)條件建立空間直角坐標(biāo)系,進(jìn)而得相關(guān)點的坐標(biāo),求出直線A1B與AC1的方向向量,根據(jù)向量數(shù)量積求出方向向量夾角,最后根據(jù)異面直線所成角與方向向量夾角之間相等或互補可得夾角的余弦值;(2)根據(jù)建立的空間直角坐標(biāo)系,得相關(guān)點的坐標(biāo),求出各半平面的法向量,根據(jù)向量數(shù)量積求出法向量的夾角,最后根據(jù)二面角與法向量夾角之間關(guān)系確定二面角的正弦值.
試題解析:解:在平面ABCD內(nèi),過點A作AEAD,交BC于點E.
因為AA1平面ABCD,
所以AA1AE,AA1AD.
如圖,以為正交基底,建立空間直角坐標(biāo)系A-xyz.
因為AB=AD=2,AA1=, .
則.
(1) ,
則.
因此異面直線A1B與AC1所成角的余弦值為.
(2)平面A1DA的一個法向量為.
設(shè)為平面BA1D的一個法向量,
又,
則即
不妨取x=3,則,
所以為平面BA1D的一個法向量,
從而,
設(shè)二面角B-A1D-A的大小為,則.
因為,所以.
因此二面角B-A1D-A的正弦值為.
點睛:利用法向量求解空間線面角、面面角的關(guān)鍵在于“四破”:①破“建系關(guān)”,構(gòu)建恰當(dāng)?shù)目臻g直角坐標(biāo)系;②破“求坐標(biāo)關(guān)”,準(zhǔn)確求解相關(guān)點的坐標(biāo);③破“求法向量關(guān)”,求出平面的法向量;④破“應(yīng)用公式關(guān)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體及其三視圖如圖所示,過棱的中點作平行于、的平面分別交四面體的棱、、于點、、.
(1)求證:四邊形是矩形;
(2)求點到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,過點的直線的參數(shù)方程為(為參數(shù)).以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),則實數(shù)m的值是______;若函數(shù)f(x)在區(qū)間[-1,a-2]上滿足對任意x1≠x2,都有成立,則實數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求f(x)的定義域;
(2)當(dāng)x∈(1,+∞),
①求證:f(x)在區(qū)間(1,+∞)上是減函數(shù);
②求使關(guān)系式f(2+m)>f(2m-1)成立的實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若是定義在上的偶函數(shù),且在上是增函數(shù),,則;
②若銳角、滿足c,則;
③若,則對恒成立;
④要得到的圖像,只需將的圖像向右平移個單位:
其中真命題的個數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點, 在橢圓上, 在直線上,且.
()求橢圓的離心率.
()當(dāng)邊通過坐標(biāo)原點時,求的長及的面積.
()當(dāng),且斜邊的長最大時,求所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級50名學(xué)生參加數(shù)學(xué)競賽,根據(jù)他們的成績繪制了如圖所示的頻率分布直方圖,已知分?jǐn)?shù)在的矩形面積為,
求:分?jǐn)?shù)在的學(xué)生人數(shù);
這50名學(xué)生成績的中位數(shù)精確到;
若分?jǐn)?shù)高于60分就能進(jìn)入復(fù)賽,從不能進(jìn)入復(fù)賽的學(xué)生中隨機抽取兩名,求兩人來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面所截而得,已知平面 為的中點, 面.
(1)求的長;
(2)求證:面面;
(3)求平面與平面相交所成銳角二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com