以橢圓的右焦點(diǎn)為圓心作一個圓,使此圓過橢圓中心并交橢圓于點(diǎn)M,N,
若過橢圓左焦點(diǎn)的直線MF1是圓的切線,則橢圓的離心率為                
本題主要考查了直線與圓錐曲線的綜合問題.考查學(xué)生分析問題、解決問題的能力
由題意根據(jù)橢圓的定義和焦半徑和圓的半徑關(guān)系得:|MF2|=|OF2|=c,|MF1|+|MF2|=2a,|F1F2|=2c,然后利用過橢圓左焦點(diǎn)的直線MF1是圓的切線,則利用垂直關(guān)系得到直角三角形MF1F2結(jié)合勾股定理得到,|MF1|2+|MF2|2=|F1F2|2,即(2a-c)2+c2=4c2,整理得2a2-2ac-c2=0,即e2+2e-2=0,解得e=。故答案為
解決該試題的關(guān)鍵是先根據(jù)題意和橢圓定義可知|MF2|=|OF2|=c,|MF1|+|MF2|=2a,|F1F2|="2c" 進(jìn)而根據(jù)勾股定理建立等式求得e。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,橢圓的左焦點(diǎn)為,右焦點(diǎn)為,離心率.過的直線交橢圓于兩點(diǎn),且△的周長為

(Ⅰ)求橢圓的方程.
(Ⅱ)設(shè)動直線與橢圓有且只有一個公共點(diǎn),且與直線相交于點(diǎn).試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(I) 已知拋物線過焦點(diǎn)的動直線l交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn), 求證: 為定值;
(Ⅱ)由 (Ⅰ) 可知: 過拋物線的焦點(diǎn)的動直線 l 交拋物線于兩點(diǎn), 存在定點(diǎn), 使得為定值. 請寫出關(guān)于橢圓的類似結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線與橢圓交于,兩點(diǎn),已知,,若且橢圓的離心率,又橢圓經(jīng)過點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,左右焦點(diǎn)分別為
(1)若上一點(diǎn)滿足,求的面積;
(2)直線于點(diǎn),線段的中點(diǎn)為,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一圓形紙片的圓心為點(diǎn),點(diǎn)是圓內(nèi)異于點(diǎn)的一定點(diǎn),點(diǎn)是圓周上一點(diǎn).把紙片折疊使點(diǎn)重合,然后展平紙片,折痕與交于點(diǎn).當(dāng)點(diǎn)運(yùn)動時點(diǎn)的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)設(shè)橢圓的右焦點(diǎn)為,直線軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個端點(diǎn)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.設(shè)是橢圓上的一點(diǎn),、為焦點(diǎn),,則
的面積為(  )
A.B.C.D.16

查看答案和解析>>

同步練習(xí)冊答案