在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是線段BC的中點(diǎn)O。

(1)證明在側(cè)棱AA1上存在一點(diǎn)E,使得OE⊥平面BB1C1C,并求出AE的長(zhǎng);

(2)求平面A1B1C與平面BB1C1C夾角的余弦值。

 

【答案】

 (1)  (2)

【解析】(1)證明:連接AO,在中,作于點(diǎn)E,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912462104639747/SYS201207091246524526335352_DA.files/image005.png">,得,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912462104639747/SYS201207091246524526335352_DA.files/image007.png">平面ABC,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912462104639747/SYS201207091246524526335352_DA.files/image009.png">,

,所以平面,所以,

所以平面,又,得

(2)如圖所示,分別以所在的直線為x,y,z軸建立空間直角坐標(biāo)系,則A(1,0,0), C(0,-2,0), A1(0.0,2),B(0,2,0)

由(1)可知得點(diǎn)E的坐標(biāo)為,由(1)可知平面的法向量是,設(shè)平面的法向量,

,得,令,得,即

所以

即平面平面與平面BB1C1C夾角的余弦值是。

【點(diǎn)評(píng)】本題考查線面垂直,二面角、向量法在解決立體幾何問(wèn)題中的應(yīng)用以及空間想象的能力. 高考中,立體幾何解答題一般有以下三大方向的考查.一、考查與垂直,平行有關(guān)的線面關(guān)系的證明;二、考查空間幾何體的體積與表面積;三、考查異面角,線面角,二面角等角度問(wèn)題.前兩種考查多出現(xiàn)在第1問(wèn),第3種考查多出現(xiàn)在第2問(wèn);對(duì)于角度問(wèn)題,一般有直接法與空間向量法兩種求解方法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知三棱柱ABC-A1B1C1的三視圖如圖所示,其中主視圖AA1B1B和左視圖B1BCC1均為矩形,在俯視圖△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
35

(1)在三棱柱ABC-A1B1C1中,求證:BC⊥AC1;
(2)在三棱柱ABC-A1B1C1中,若D是底邊AB的中點(diǎn),求證:AC1∥平面CDB1
(3)若三棱柱的高為5,求三視圖中左視圖的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是線段BC的中點(diǎn)O.
(1)求點(diǎn)C到平面A1ABB1的距離;
(2)求二面角A-BC1-B1的余弦值;
(3)若M,N分別為直線AA1,B1C上動(dòng)點(diǎn),求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是線段BC的中點(diǎn)O.
(1)證明在側(cè)棱AA1上存在一點(diǎn)E,使得OE⊥平面BB1C1C,并求出AE的長(zhǎng);
(2)求平面A1B1C與平面BB1C1C夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•北京)如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求證二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案