5.下列各式中成立的是( 。
A.${({\frac{m}{n}})^2}={n^2}{m^{\frac{1}{2}}}$B.$\sqrt{\root{3}{9}}=\root{3}{3}$C.$\root{4}{{{x^3}+{y^3}}}={(x+y)^{\frac{3}{4}}}$D.$\root{4}{{{{(-3)}^4}}}=-3$

分析 根據(jù)指數(shù)冪的運算性質化簡,再判斷即可.

解答 解:因為($\frac{m}{n}$)2=m2n-2,$\sqrt{\root{3}{9}}$=$\root{3}{\sqrt{9}}$$\root{3}{3}$,$\root{4}{{x}^{3}+{y}^{3}}$=(x3+y3)${\;}^{\frac{1}{4}}$,$\root{4}{(-3)^{4}}$=3,
故選:B

點評 本題考查了指數(shù)冪的運算性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖所示,A、B是兩個非空集合,定義A*B表示陰影部分集合,若集合A={x|y=$\sqrt{3x-{x^2}}$,x,y∈R},B={y|y=2x,x>0},則A*B=( 。
A.[0,+∞)B.[0,1]∪(3,+∞)C.[0,1)∪[3,+∞)D.(1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.△ABC的三個內(nèi)角A,B,C所對的邊分別為$a,b,c,asinAsinB+b{cos^2}A=\sqrt{3}a$,則$\frac{a}$的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{an}滿足an+1=an+2,且a2=3,bn=ln(an)+ln(an+1).
(1)求數(shù)列{bn}的通項公式;
(2)令${c_n}={e^{-{b_n}}}$,求數(shù)列{cn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設4a=5b=m,且$\frac{1}{a}$+$\frac{2}$=1.
(1)求a,b的值(用m表示);
(2)求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=x2-2kx-8在區(qū)間[0,14]上為增函數(shù),則實數(shù)k的取值范圍為(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}的首項a1=1,數(shù)列{bn}是公比為16的等比數(shù)列,且${b_n}={2^{a_n}}$.
(1)求數(shù)列{an}的通項公式an及前n項和Sn;
(2)設${c_n}=\frac{S_n}{n}•{2^{n-1}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知正四面體ABCD,則直線BC與平面ACD所成角的正弦值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在[-1,1]上的減函數(shù),若f(m-1)>f(2m-1),則實數(shù)m的取值范圍是(0,1].

查看答案和解析>>

同步練習冊答案