已知集合A={x|
x-3
x-1
≤0,x∈R},B={x|x2-(1+a)x+a>0,x∈R},且B⊆A,求實數(shù)a的取值范圍.
考點:集合的包含關(guān)系判斷及應(yīng)用
專題:不等式的解法及應(yīng)用,集合
分析:通過解不等式將A,B化簡,根據(jù)集合的包含關(guān)系判斷即可.
解答: 解:集合A={x|
x-3
x-1
≤0,x∈R}={x|(x-1)(x-3)≤0}=(1,3]
B={x|x2-(1+a)x+a>0,x∈R}={x|(x-1)(x-a)>0}
要使B⊆A,只要a>3即可,故a的取值范圍是(3,+∞)
點評:本題借助解不等式考查了集合的包含關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
2
sin2x-cos2x的圖象過點(
π
8
,0).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運算:
.
ab
cd
.
=ad-bc.
(1)若角α是△ABC的一個內(nèi)角,且
.
sinαcosα
-11
.
=
1
5
,請判斷△ABC形狀并求sinα-cosα的值;
(2)求f(x)=
.
cosx4
msinxcosx
.
-3m(m∈R)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某校學(xué)生的視力情況,現(xiàn)采用隨機抽樣的方式從該校的A,B兩班中各抽5名學(xué)生進行視力檢測.檢測的數(shù)據(jù)如下:
A班的5名學(xué)生的視力檢測結(jié)果:4.3,5.1,4.6,4.1,4.9.
B班的5名學(xué)生的視力檢測結(jié)果:5.1,4.9,4.0,4.0,4.5.
(Ⅰ)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪個班的學(xué)生視力較好?
(Ⅱ)由數(shù)據(jù)判斷哪個班的5名學(xué)生視力方差較大?(結(jié)論不要求證明)
(Ⅲ)現(xiàn)從A班的上述5名學(xué)生中隨機選取3名學(xué)生,用X表示其中視力大于4.6的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,且5sin
C
2
=cosC+2.
(1)求角C的大;
(2)若
tanA
tanB
+1=
4
3
c
3b
,c=2,求邊a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市為控制大氣PM2.5的濃度,環(huán)境部門規(guī)定:該市每年的大氣主要污染物排放總量不能超過55萬噸,否則將采取緊急限排措施.已知該市2013年的大氣主要污染物排放總量為40萬噸,通過技術(shù)改造和倡導(dǎo)綠色低碳生活等措施,此后每年的原大氣主要污染物排放量比上一年的排放總量減少10%.同時,因經(jīng)濟發(fā)展和人口增加等因素,每年又新增加大氣主要污染物排放量脅(m>0)萬噸.
(Ⅰ)從2014年起,該市每年大氣主要污染物排放總量(萬噸)依次構(gòu)成數(shù)列{an},求相鄰兩年主要污染物排放總量的關(guān)系式;
(Ⅱ)證明:數(shù)列{an-10m}是等比數(shù)列;
(Ⅲ)若該市始終不需要采取緊急限排措施,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x<0時,f(x)=x2-x-2,解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD-A1B1C1D1是棱長為1的正方體.
(1)求異面直線BC1與B1D1所成的角.
(2)求直線BC1與平面ABCD所成的角.
(3)求二面角C1-BD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-y-1=0及直線x-y-5=0截圓C所得的弦長均為10,則圓C的面積是
 

查看答案和解析>>

同步練習(xí)冊答案