分析 由橢圓方程求出橢圓左右焦點(diǎn)的坐標(biāo),得到直線l的方程,和橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出A,B兩點(diǎn)橫坐標(biāo)的和與積,再由向量數(shù)量積的坐標(biāo)運(yùn)算求得$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$的值.
解答 解:由$\frac{{x}^{2}}{4}$+y2=1,知a2=4,b2=1,
∴c2=a2-b2=3,則c=$\sqrt{3}$.
∴${F}_{1}(-\sqrt{3},0),{F}_{2}(\sqrt{3},0)$,
則AB所在直線方程為y-0=1×(x-$\sqrt{3}$),即y=x-$\sqrt{3}$.
聯(lián)立$\left\{\begin{array}{l}{y=x-\sqrt{3}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得$5{x}^{2}-8\sqrt{3}x+8=0$.
設(shè)A(x1,y1),B(x2,y2),
則${x}_{1}+{x}_{2}=\frac{8\sqrt{3}}{5},{x}_{1}{x}_{2}=\frac{8}{5}$.
$\overrightarrow{{F}_{1}A}=({x}_{1}+\sqrt{3},{y}_{1}),\overrightarrow{{F}_{1}B}=({x}_{2}+\sqrt{3},{y}_{2})$,
∴$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$=${x}_{1}{x}_{2}+\sqrt{3}({x}_{1}+{x}_{2})+3+{y}_{1}{y}_{2}$
=${x}_{1}{x}_{2}+\sqrt{3}({x}_{1}+{x}_{2})+3+{x}_{1}{x}_{2}-\sqrt{3}({x}_{1}+{x}_{2})+3$
=$2{x}_{1}{x}_{2}+6=2×\frac{8}{5}+6=\frac{46}{5}$.
故答案為:$\frac{46}{5}$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了直線與圓錐曲線位置關(guān)系的應(yīng)用,考查平面向量的數(shù)量積運(yùn)算,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$與$\overrightarrow{c}$也共線 | |
B. | 任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)總是一平行四邊形的四個(gè)頂點(diǎn) | |
C. | 向量$\overrightarrow{a}$與$\overrightarrow$不共線,則$\overrightarrow{a}$與$\overrightarrow$都是非零向量 | |
D. | 有相同起點(diǎn)的兩個(gè)非零向量不平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{6}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com