【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。
【答案】
(1)證明:由題意得,AD⊥DC,AD⊥DF,且DC∩DF=D,
∴AD⊥平面CDEF,∴AD⊥FC,
∵四邊形CDEF為正方形.∴DC⊥FC
由DC∩AD=D∴FC⊥平面ABCD,∴FC⊥AC
又∵四邊形ABCD為直角梯形,
AB∥CD,AD⊥DC,AD=2,AB=4
∴ , ,則有AC2+BC2=AB2
∴AC⊥BC
由BC∩FC=C,∴AC⊥平面FCB,∴AC⊥FB
(2)解:由(1)知AD,DC,DE所在直線相互垂直,
故以D為原點,DA,DC,DE所在直線分別為x,y,z軸,
建立如圖所示的空間直角坐標(biāo)系,
可得D(0,0,0),F(xiàn)(0,2,2),B(2,4,0),
E(0,0,2),C(0,2,0),A(2,0,0),
由(1)知平面FCB的法向量為 ,
∴ ,
設(shè)平面EFB的法向量為 ,
則有:
令z=1則 ,
設(shè)二面角E﹣FB﹣C的大小為θ,
,
∵ ,∴ .
【解析】(1)由題意得,AD⊥DC,AD⊥DF,從而AD⊥FC,DC⊥FC,由此能證明AC⊥FB.(2)以D為原點,DA,DC,DE所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角E﹣FB﹣C的大。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖方莖葉圖記錄了甲、乙兩組各5名學(xué)生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為l5,乙組數(shù)據(jù)的平均數(shù)為16.8,則x+y的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)按從小到大順序排列,得到﹣1,0,4,x,7,14中位數(shù)為5,則這組數(shù)據(jù)的平均數(shù)為 , 方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填 ( )
A.i>20
B.i<20
C.i>=20
D.i<=20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老師對全班名學(xué)生學(xué)習(xí)積極性和參加社團活動情況進行調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:
參加社團活動 | 不參加社團活動 | 合計 | |
學(xué)習(xí)積極性高 | |||
學(xué)習(xí)積極性一般 | |||
合計 |
(1)請把表格數(shù)據(jù)補充完整;
(2)若從不參加社團活動的人按照分層抽樣的方法選取人,再從所選出的人中隨機選取兩人作為代表發(fā)言,求至少有一個學(xué)習(xí)積極性高的概率;
(3)運用獨立性檢驗的思想方法分析:請你判斷是否有的把握認為學(xué)生的學(xué)習(xí)積極性與參與社團活動由關(guān)系?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知左、右焦點分別為的橢圓與直線相交于兩點,使得四邊形為面積等于的矩形.
(1)求橢圓的方程;
(2)過橢圓上一動點(不在軸上)作圓的兩條切線,切點分別為,直線與橢圓交于兩點, 為坐標(biāo)原點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項和為Tn , 求Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com