如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面和圓所在的平面互相垂直,且,.
(1)求證:平面;
(2)設(shè)的中點(diǎn)為,求證:平面;
(3)設(shè)平面將幾何體分成的兩個(gè)錐體的體積分別為,,求.
(1)平面平面,,平面又為圓的直徑,平面(2)設(shè)的中點(diǎn)為,則,又,則,為平行四邊形,平面(3)
解析試題分析:(1)證明: 平面平面,,
平面平面=,平面,
平面, , 2分
又為圓的直徑,,
平面。 4分
(2)設(shè)的中點(diǎn)為,則,又,
則,為平行四邊形, 6分
,又平面,平面,
平面。 9分
(3)過(guò)點(diǎn)作于,平面平面,
平面,, 10分
平面,
, 12分
. 14分
考點(diǎn):線面垂直平行的判定及椎體的體積
點(diǎn)評(píng):根據(jù)椎體的體積公式,求體積比主要是找到底面積和高的關(guān)系,判定線面垂直要判定直線垂直于平面內(nèi)的兩條相交直線,判定線面平行可轉(zhuǎn)化為面外直線平行于面內(nèi)直線或由兩面平行得其中一面內(nèi)直線平行于另外一面
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點(diǎn).
(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在多面體中,四邊形是邊長(zhǎng)為2的正方形,平面平面,平面都與平面垂直,且、、都是正三角形。
(1)求證:;
(2)求多面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側(cè)面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點(diǎn),求二面角A—EB1—A1的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知斜三棱柱—,側(cè)面與底面垂直,∠,,且⊥,=.
(1)試判斷與平面是否垂直,并說(shuō)明理由;
(2)求側(cè)面與底面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABC—中,底面為正三角形,平面ABC,=2AB,N是的中點(diǎn),M是線段上的動(dòng)點(diǎn)。
(1)當(dāng)M在什么位置時(shí),,請(qǐng)給出證明;
(2)若直線MN與平面ABN所成角的大小為,求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在圖一所示的平面圖形中,是邊長(zhǎng)為 的等邊三角形,是分別以為底的全等的等腰三角形,現(xiàn)將該平面圖形分別沿折疊,使所在平面都與平面垂直,連接,得到圖二所示的幾何體,據(jù)此幾何體解決下面問(wèn)題.
(1)求證:;
(2)當(dāng)時(shí),求三棱錐的體積;
(3)在(2)的前提下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形PCBM是直角梯形,,∥,.又,,直線AM與直線PC所成的角為.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com