已知變量x、y滿足條件
x≥1
x-y≤0
x+2y-9≤0
,則2x+y的最大值是( 。
A、3B、6C、9D、12
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:先畫(huà)出線性約束條件表示的可行域,再將目標(biāo)函數(shù)賦予幾何意義,最后利用數(shù)形結(jié)合即可得目標(biāo)函數(shù)的最值.
解答: 解:設(shè)z=2x+y,
畫(huà)出
x≥1
x-y≤0
x+2y-9≤0
的可行域如圖陰影部分,
x-y=0
x+2y-9=0
x=3
y=3
,A(3,3)
目標(biāo)函數(shù)z=2x+y可看做斜率為-2的動(dòng)直線,其縱截距越大z越大,
由圖數(shù)形結(jié)合可得當(dāng)動(dòng)直線過(guò)點(diǎn)A時(shí),z最大=2×3+3=9.
故選:C.
點(diǎn)評(píng):本題主要考查了線性規(guī)劃,以及二元一次不等式組表示平面區(qū)域的知識(shí),數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出滿足條件{0,1}⊆M?{0,1,2,3}的集合M
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐S-ABC中,E為棱SC的中點(diǎn),若AC=2
3
,SA=SB=AB=BC=SC=2,則異面直線AC與BE所成的角為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間圖形的三視圖如圖,空間幾何體的表面積為( 。
A、8πB、10π
C、12πD、9π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x|x|的圖象經(jīng)描點(diǎn)確定后的形狀大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式是an=
1
n
+
n+1
,前n項(xiàng)和為9,則n等于( 。
A、9B、99C、10D、100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果直線a?β,直線b?β,l∩α=A,l∩β=A.試判斷直線l與平面β的關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求關(guān)于x的方程7x2-(k+13)x+k2-k-2=0滿足0<x1<1<x2<2的兩個(gè)實(shí)數(shù)根的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),P(
a
4
,t)為橢圓C上第一象限的點(diǎn),過(guò)點(diǎn)P作兩互相垂直的直線L1、L2,L1經(jīng)過(guò)橢圓C左頂點(diǎn)A,L2經(jīng)過(guò)右焦點(diǎn)F2
(1)求橢圓離心率;
(2)將直線L1繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)30°后,直線L1通過(guò)左焦點(diǎn)F1,且與橢圓交于B點(diǎn),此時(shí)△PF2B的面積為
35
3
11
,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案