(08年黃岡中學(xué)一模理) (本小題滿分12分)四棱錐S―ABCD中,底面ABCD為平行四邊形,側(cè)面底面ABCD. 已知

(1)證明;

(2)求直線SD與平面SAB所成角的大小.

   

 

解析:解法一:(1)作,垂足為O,連結(jié)AO,由側(cè)面底面ABCD,得底面ABCD. 因?yàn)?I>SA=SB,所以AO=BO. 又,故為等腰直角三角形, 由三垂線定理,得

(2)由(1)知,依題設(shè),故,由,得 所以的面積 連結(jié)DB,得的面積 設(shè)D到平面SAB的距離為h,由,

,解得

設(shè)SD與平面SAB所成角為,則 所以直線SD與平面SAB所成的角為

解法二:(1)作,垂足為O,連結(jié)AO,由側(cè)面底面ABCD,得平面ABCD. 因?yàn)?I>SA=SB,所以AO=BO. 又,為等腰直角三角形,

如圖,以O為坐標(biāo)原點(diǎn),OAx軸正向,建立直角坐標(biāo)系O―xyz ,所以      

(2)取AB中點(diǎn)E.

 連結(jié)SE,取SE中點(diǎn)G,連結(jié)OG

,OG與平面SAB內(nèi)兩條相交直線SE、AB垂直,所以平面SAB.的夾角記為,SD與平面SAB所成的角記為,則互余.

所以直線SD與平面SAB所成的角為

 

       

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模理) (本小題滿分12分)一個(gè)袋子中裝有m個(gè)紅球和n個(gè)白球(m>n≥4),它們除顏色不同外,其余都相同,現(xiàn)從中任取兩個(gè)球.

(1)若取出兩個(gè)紅球的概率等于取出一紅一白兩個(gè)球的概率的整數(shù)倍,求證:m必為奇數(shù);

(2)若取出兩個(gè)球顏色相同的概率等于取出兩個(gè)顏色不同的概率,求滿足m+n≤20的所有數(shù)組(m, n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模理) (本小題滿分12分)已知A、B、C的三個(gè)內(nèi)角,向量,且

(1)求的值;

(2)求C的最大值,并判斷此時(shí)的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模理) (本小題滿分14分)對于函數(shù)f(x),若存在,使成立,則稱x0f(x)的不動點(diǎn). 如果函數(shù)有且僅有兩個(gè)不動點(diǎn)0,2,且

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知各項(xiàng)不為零且不為1的數(shù)列{an}滿足,求證:

(3)設(shè),為數(shù)列{bn}的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模文)  (12分) 如圖,在梯形ABCD中,ABCD,AD=DC=CB=a , ∠ABC=60°.平面ACEF⊥平面ABCD,且四邊形ACEF是矩形,AF=a.

(I)求證:ACBE

(II)求二面角BEFD的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模文)   (14分)已知橢圓過定點(diǎn)A(1,0),焦點(diǎn)在x軸上,且離心率e滿足

(I)求的取值范圍;

(II)若橢圓與的交于點(diǎn)B,求點(diǎn)B的橫坐標(biāo)的取值范圍;

(Ⅲ)在條件(II)下,現(xiàn)有以A為焦點(diǎn),過點(diǎn)B且開口向左的拋物線,拋物線的頂點(diǎn)坐標(biāo)為M(m,0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案