12.設(shè)f(x)=ex,0<a<b,若p=f($\sqrt{ab}$),q=f($\frac{a+b}{2}$),$r=\sqrt{f(a)f(b)}$,則下列關(guān)系式中正確的是( 。
A.q=r>pB.q=r<pC.p=r>qD.p=r<q

分析 利用指數(shù)運(yùn)算性質(zhì)、基本不等式的性質(zhì)即可得出.

解答 解:∵f(x)=ex,0<a<b,
∴p=f($\sqrt{ab}$)=${e}^{\sqrt{ab}}$,q=f($\frac{a+b}{2}$)=${e}^{\frac{a+b}{2}}$>${e}^{\sqrt{ab}}$,$r=\sqrt{f(a)f(b)}$=$\sqrt{{e}^{a}•{e}^}$=${e}^{\frac{a+b}{2}}$,
∴q=r>p.
故選:A.

點(diǎn)評(píng) 本題考查了指數(shù)運(yùn)算性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若命題“?x∈R,使得$\frac{\sqrt{2}}{3}$sinx+$\frac{\sqrt{2}}{3}$cosx-m=0”是真命題,則m的值可以是( 。
A.-1B.1C.-$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a=log23,b=log${\;}_{\frac{1}{2}}$3,c=3${\;}^{-\frac{1}{2}}$,則a,b,c的大小關(guān)系(從大到小排列)是a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C的圓心在直線2x-y-7=0上,且與y軸交于A(0,-4),B(0,-2)兩點(diǎn)
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(-1,-4)作圓C的切線,切點(diǎn)分別為點(diǎn)A,B,求切線的方程及切線長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在三角形ABC中,已知sinC=2sin(B+C)cosB,那么三角形ABC一定是( 。┤切危
A.等腰直角B.等腰C.直角D.等邊

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=2sin(\frac{π}{2}x+\frac{π}{3})$,則f(1)+f(2)+f(3)+…+f(2022)=(  )
A.1B.$-\sqrt{3}$C.0D.$1-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.現(xiàn)有l(wèi),2,3,4,5,6,7,8,9九個(gè)自然數(shù)
(1)從中一次性抽取3個(gè)數(shù),求這3個(gè)數(shù)之和是偶數(shù)的概率;
(2)做如下游戲:從中隨機(jī)抽取一個(gè)數(shù),若能被3整除則游戲停止;若不能被3整除,則放回后再隨機(jī)抽取一個(gè)數(shù),游戲繼續(xù),至多抽取5次,若5次抽取的數(shù)都不能被3整除,游戲也停止.設(shè)抽取的次數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)m,n為兩條不同的直線,α,β,γ為三個(gè)不同的平面,則下列命題中為假命題的是( 。
A.若m⊥α,n⊥α,則m∥nB.若α∥β,β⊥γ,則α⊥γC.若m∥n,m⊥α,則n⊥αD.若α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某中學(xué)為了了解學(xué)生的課外閱讀情況,隨機(jī)調(diào)查了50名學(xué)生,得到他們?cè)谀骋惶旄髯哉n外閱讀所用時(shí)間的數(shù)據(jù),結(jié)果用圖的條形圖表示.根據(jù)條形圖可得這50名學(xué)生這一天平均每人的課外閱讀時(shí)間為0.97小時(shí).

查看答案和解析>>

同步練習(xí)冊(cè)答案