已知
C
n-1
n+1
=21,那么n=
 
考點(diǎn):組合及組合數(shù)公式
專題:排列組合
分析:根據(jù)組合數(shù)的公式,列出方程,求出n的值.
解答: 解:∵
C
n-1
n+1
=21,
C
2
n+1
=21,
n(n+1)
2
=21;
解得n=6或n=-7(舍去),
∴n的值是6.
故答案為:6.
點(diǎn)評(píng):本題考查了組合數(shù)公式的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)組合數(shù)公式進(jìn)行解答,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x),對(duì)任意實(shí)數(shù)x都有f(x+2)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=x2,若在區(qū)間
[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2
1
(x-
1
x
)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)(x-1)31(2x-1)1981=a0+a1x+a2x2+a3x3+…+a2012x2012,求:
(1)a1+a2+a3+…+a2012;
(2)a0+a1+2a2+3a3+…+2012a2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
△x→0
f(x0+△x)-f(x0-△x)
2△x
=( 。
A、
1
2
f′(x0
B、f′(x0
C、2f′(x0
D、-f′(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(180°+α)+cos(90°+α)=-a,則cos(270°-α)+2sin(360°-α)的值是(  )
A、-
2a
3
B、-
3a
2
C、
2a
3
D、
3a
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∠ABC=90°,AB=BC=BB1,M是A1B1的中點(diǎn),N是AC1與A1C的交點(diǎn).
(1)求證:MN∥平面BCC1B1;
(2)求證:MN⊥平面ABC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)在休閑廣場(chǎng)活動(dòng)比較流行一種“套圈”的游戲,花1元錢可以買到2個(gè)竹制的圓形套圈,玩家站在指定的位置向放置在地面上獎(jiǎng)品拋擲,一次投擲一個(gè),只要獎(jiǎng)品被套圈套住,則該獎(jiǎng)品即歸玩家所有,已知玩家對(duì)一款玩具熊志在必得,玩具被套走以后商家馬上更換同樣的玩具供玩具游戲,已知玩家在一段時(shí)間內(nèi)游戲中的消費(fèi)金額與中獎(jiǎng)次數(shù)之間的數(shù)據(jù)如下:
消費(fèi)金額x2468121516
中獎(jiǎng)次數(shù)y1123455
(1)試判斷變量x與變量y之間是否具有線性相關(guān)關(guān)系,若是請(qǐng)求出線性回歸方程;若不是,請(qǐng)說(shuō)明理由;
(2)①你能否通過表格中的數(shù)據(jù)估計(jì)當(dāng)玩家消費(fèi)30元時(shí)可以獲取的玩具熊的個(gè)數(shù),若能,給出你的估計(jì)值;
②若一只玩具熊的成本價(jià)為a元,試討論商家的利潤(rùn)預(yù)期與玩具熊的成本價(jià)之間的關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若命題p:“存在x>1,使得x2+(m-3)x+3-m<0”為假命題,則m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案