已知實數(shù)x,y滿足約束條件
x≥0
y≤x
2x+y-9≤0
,則z=x+3y的最大值等于( 。
A、9B、12C、27D、36
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:由約束條件作出可行域,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答: 解:由約束條件
x≥0
y≤x
2x+y-9≤0
作出可行域如圖,

聯(lián)立
y=x
2x+y-9=0
,解得:A(3,3),
化目標函數(shù)z=x+3y為y=-
x
3
+
z
3
,
由圖可知,當直線y=-
x
3
+
z
3
過A時,直線在y軸上的截距最大,z最大.
此時z=3+3×3=12.
故選:B.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)在△ABC中,已知b=3,c=3
3
,B=30°,求角A、角C和邊a;
(2)在△ABC中,a:b:c=3:5:7,求△ABC的最大角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2-2ax-3(a≠0)在[-1,2]上最大值為1,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間直角坐標系Oxyz中,已知點A(2,1,-1),則與點A關于原點對稱的點A1的坐標為( 。
A、(-2,-1,1)
B、(-2,1,-1)
C、(2,-1,1)
D、(-2,-1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校要調查高中二年級男生的身高情況,現(xiàn)從全年級男生中隨機抽取一個容量為100的樣本.樣本數(shù)據(jù)統(tǒng)計如表,對應的頻率分布直方圖如圖所示.
(1)求頻率分布直方圖中a,b的值;
(2)用樣本估計總體,若該校高中二年級男生共有1000人,求該年級中男生身高不低于170cm的人數(shù).
身高(單位:cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
人數(shù)2815202518102

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y=x2+1,x∈[
1
2
,2]},集合B={x|m-1≤x≤m+1},命題p:x∈A,命題q:x∈B,若命題p是命題q的必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x+3|-|x-2|.
①求不等式f(x)≥3的解集;
②若f(x)≥|a-4|有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,三內角A,B,C的對邊分別為a,b,c,且a2=b2+c2+bc,a=
3
,S為△ABC的面積,則S+
3
cosBcosC的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=ax2+bx(a,b為非零實數(shù))存在一個虛數(shù)x1,使f(x)為實數(shù)-c,則b2-4ac與(2ax1+b)2的關系為( 。
A、不能比較大小
B、b2-4ac>(2ax1+b)2
C、b2-4ac<(2ax1+b)2
D、b2-4ac=(2ax1+b)2

查看答案和解析>>

同步練習冊答案