已知、分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點是橢圓的右頂點,直線與橢圓交于、兩點(在第一象限內(nèi)),又、是此橢圓上兩點,并且滿足,求證:向量共線.
(Ⅰ);(Ⅱ)詳見解析.

試題分析:(Ⅰ)求此橢圓的方程,由題意到上頂點的距離為2,即,,再由,即可求出,從而得橢圓的方程;(Ⅱ)求證:向量共線,即證,由于點是橢圓的右頂點,可得,直線與橢圓交于兩點(在第一象限內(nèi)),可由,解得,得,只需求出直線的斜率,由題意,而的平分線平行,可得的平分線垂直于軸,設(shè)的斜率為,則的斜率;因此的方程分別為:、;其中;分別代入橢圓方程,得的表達式,從而可得直線的斜率,從而可證.
試題解析:(Ⅰ)由題知:
(Ⅱ)因為:,從而的平分線平行,
所以的平分線垂直于軸;
不妨設(shè)的斜率為,則的斜率;因此的方程分別為:、;其中; 由得;,因為在橢圓上;所以是方程的一個根;
從而;    同理:;得,
從而直線的斜率;又、;所以;所以所以向量共線.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點,試問:在y軸正半軸上是否存在一個定點M滿足,若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓錐曲線的兩個焦點坐標是,且離心率為;
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)曲線表示曲線軸左邊部分,若直線與曲線相交于兩點,求的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點,使,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點在坐標原點,焦點為,點是點關(guān)于軸的對稱點,過點的直線交拋物線于兩點。
(Ⅰ)試問在軸上是否存在不同于點的一點,使得軸所在的直線所成的銳角相等,若存在,求出定點的坐標,若不存在說明理由。
(Ⅱ)若的面積為,求向量的夾角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點是常數(shù)),且動點軸的距離比到點的距離小.
(1)求動點的軌跡的方程;
(2)(i)已知點,若曲線上存在不同兩點滿足,求實數(shù)的取值范圍;
(ii)當時,拋物線上是否存在異于的點,使得經(jīng)過、、三點的圓和拋物線在點處有相同的切線,若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=kx+b與橢圓交于A、B兩點,記△AOB的面積為S.

(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點,焦點在軸上,焦距為2,離心率為
(1)求橢圓的方程;
(2)設(shè)直線經(jīng)過點(0,1),且與橢圓交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓拋物線的焦點均在軸上,的中心和 的頂點均為坐標原點從每條曲線上取兩個點,將其坐標記錄于下表中:










(Ⅰ)求分別適合的方程的點的坐標;
(Ⅱ)求的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的離心率為,過右焦點且斜率為的直線與相交于兩點.若,則(       )
A.1B.C.D.2

查看答案和解析>>

同步練習冊答案