已知直線l過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直.l與C交于A,B兩點(diǎn),|AB|=12,P為C的準(zhǔn)線上一點(diǎn),則△ABP的面積為( )
A.18
B.24
C.36
D.48
【答案】分析:首先設(shè)拋物線的解析式y(tǒng)2=2px(p>0),寫出次拋物線的焦點(diǎn)、對(duì)稱軸以及準(zhǔn)線,然后根據(jù)通徑|AB|=2p,求出p,△ABP的面積是|AB|與DP乘積一半.
解答:解:設(shè)拋物線的解析式為y2=2px(p>0),
則焦點(diǎn)為F(,0),對(duì)稱軸為x軸,準(zhǔn)線為x=-
∵直線l經(jīng)過(guò)拋物線的焦點(diǎn),A、B是l與C的交點(diǎn),
又∵AB⊥x軸
∴|AB|=2p=12
∴p=6
又∵點(diǎn)P在準(zhǔn)線上
∴DP=(+||)=p=6
∴S△ABP=(DP•AB)=×6×12=36
故選C.
點(diǎn)評(píng):本題主要考查拋物線焦點(diǎn)、對(duì)稱軸、準(zhǔn)線以及焦點(diǎn)弦的特點(diǎn);關(guān)于直線和圓錐曲線的關(guān)系問(wèn)題一般采取數(shù)形結(jié)合法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直.l與C交于A,B兩點(diǎn),|AB|=12,P為C的準(zhǔn)線上一點(diǎn),則△ABP的面積為( 。
A、18B、24C、36D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)且與C的對(duì)稱軸垂直,l與C交于A、B兩點(diǎn),P為C的準(zhǔn)線上一點(diǎn),且S△ABP=36,則拋物線C的方程為
y2=16x
y2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn)且與C的對(duì)稱軸垂直,l與C交于A、B兩點(diǎn),P為C的準(zhǔn)線上一點(diǎn),且S△ABP=36,則過(guò)拋物線C的焦點(diǎn)的弦長(zhǎng)的最小值是
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直,l與C交于A,B兩點(diǎn),|AB|=8,P為C的準(zhǔn)線上一點(diǎn),則△ABP的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,A(x0,y0)(x0≠0)是拋物線C上的一定點(diǎn).
(1)已知直線l過(guò)拋物線C的焦點(diǎn)F,且與C的對(duì)稱軸垂直,l與C交于Q,R兩點(diǎn),S為C的準(zhǔn)線上一點(diǎn),若△QRS的面積為4,求p的值;
(2)過(guò)點(diǎn)A作傾斜角互補(bǔ)的兩條直線AM,AN,與拋物線C的交點(diǎn)分別為M(x1,y1),N(x2,y2).若直線AM,AN的斜率都存在,證明:直線MN的斜率等于拋物線C在點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)A1處的切線的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案