【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)試問:函數(shù)的圖象上是否存在關(guān)于坐標(biāo)原點(diǎn)對稱的點(diǎn),若存在,求出這些點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)若方程的三個(gè)實(shí)數(shù)根、、滿足:<<,且,求實(shí)數(shù)a的值.
【答案】(1);(2)存在,分別是,;(3).
【解析】
(1)分別求出函數(shù)在每段上的值域,最后求出整個(gè)函數(shù)的值域即可.
(2)假設(shè)存在這樣的點(diǎn),不妨設(shè),可求它的關(guān)于原點(diǎn)的對稱點(diǎn)坐標(biāo),再代入函數(shù)解析式中,能求出說明存在性,求不出則說明不存在這樣的點(diǎn);
(3)判斷之間的大小關(guān)系,然后分類化簡方程,求出三個(gè)實(shí)數(shù)根、、,再根據(jù),求出實(shí)數(shù)a的值.
(1)當(dāng)時(shí),
當(dāng)時(shí), ,因此函數(shù)的值域?yàn)?/span>;
(2) 假設(shè)存在這樣的點(diǎn),不妨設(shè),它關(guān)于原點(diǎn)的對稱點(diǎn)坐標(biāo)為:
,由題意可知它也在函數(shù)圖象上,因此有
(舍去),
因此存在這樣兩個(gè)點(diǎn),坐標(biāo)分別為和;
(3)由(1)可知:當(dāng)時(shí), ,顯然此時(shí), ,
當(dāng)時(shí),若時(shí),解得,若時(shí),解得
.
因此當(dāng)時(shí), ,此時(shí)方程化簡為:
解得,因此有.
當(dāng)時(shí), ,此時(shí)方程化簡為:,解得
,要想方程有三個(gè)不同的根,則必有,此時(shí)
成立,因此有,
又因?yàn)?/span>,
所以,解得(舍去), .
,因此.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù),并說明理由;
(2)若, 恒成立,求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過點(diǎn)作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且,圓與軸交于點(diǎn),,為橢圓上的動(dòng)點(diǎn),,面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某生產(chǎn)線上質(zhì)量監(jiān)督員甲是否在現(xiàn)場對產(chǎn)品質(zhì)量好壞有無影響,現(xiàn)統(tǒng)計(jì)數(shù)據(jù)如下:質(zhì)量監(jiān)督員甲在現(xiàn)場時(shí),1 000件產(chǎn)品中合格品有990件,次品有10件,甲不在現(xiàn)場時(shí),500件產(chǎn)品中有合格品490件,次品有10件.
(1)補(bǔ)充下面列聯(lián)表,并初步判斷甲在不在現(xiàn)場與產(chǎn)品質(zhì)量是否有關(guān):
合格品數(shù)/件 | 次品數(shù)/件 | 總數(shù)/件 | |
甲在現(xiàn)場 | 990 | ||
甲不在現(xiàn)場 | 10 | ||
總數(shù)/件 |
(2)用獨(dú)立性檢驗(yàn)的方法判斷能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為“甲在不在現(xiàn)場與產(chǎn)品質(zhì)量有關(guān)”?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線上的點(diǎn)均在曲線外,且對上任意一點(diǎn),到直線的距離等于該點(diǎn)與曲線上點(diǎn)的距離的最小值.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線與曲線交于不同的兩點(diǎn)、,過點(diǎn)的直線與曲線交于另一點(diǎn),且直線過點(diǎn),求證:直線過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com