【題目】過拋物線的焦點(diǎn)為F且斜率為k的直線l交曲線C兩點(diǎn),交圓M,N兩點(diǎn)(A,M兩點(diǎn)相鄰).

(1)求證:為定值;

2)過AB兩點(diǎn)分別作曲線C的切線,兩切線交于點(diǎn)P,求面積之積的最小值.

【答案】(1)證明見解析

21

【解析】

1)依題意直線的方程為,代入,利用韋達(dá)定理即可得證;

(2)利用導(dǎo)數(shù)寫出拋物線在點(diǎn)、處的切線方程,聯(lián)立兩條切線方程求出點(diǎn)的坐標(biāo),并求出的面積的表達(dá)式,結(jié)合函數(shù)思想可求出兩三角形面積之積的最小值.

解:(1)

依題意直線的方程為,代入,

,則

.

為定值

(2)因?yàn)?/span>,所以,

則切線PA方程為

PB方程為

②—①得 ③,

將③代入①得,所以

P到直線AB的距離

,

,

因?yàn)?/span>,

所以

當(dāng)且僅當(dāng)時,取最小值1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)分別是棱長為2的正方體的棱的中點(diǎn).如圖,以為坐標(biāo)原點(diǎn),射線、分別是軸、軸、軸的正半軸,建立空間直角坐標(biāo)系.

1)求向量的數(shù)量積;

2)若點(diǎn)分別是線段與線段上的點(diǎn),問是否存在直線,平面?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:1(a>b>0)的左右焦點(diǎn)分別為F1F2,離心率為A為橢圓C上一點(diǎn),且AF2F1F2,且|AF2|.

1)求橢圓C的方程;

2)設(shè)橢圓C的左右頂點(diǎn)為A1,A2,過A1,A2分別作x軸的垂線 l1l2,橢圓C的一條切線l:y=kx+m(k≠0)l1l2交于M,N兩點(diǎn),試探究是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小正周期并求出單調(diào)遞增區(qū)間;

(2)在中,角A,B,C的對邊分別是a,b,c,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.

(1)求出,,的值,并求出及數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和;

(3)設(shè),在數(shù)列中取出()項(xiàng),按照原來的順序排列成一列,構(gòu)成等比數(shù)列,若對任意的數(shù)列,均有,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、EF為山腳兩側(cè)共線的三點(diǎn),在山頂A處測得這三點(diǎn)的俯角分別為、、,計(jì)劃沿直線BF開通穿山隧道,現(xiàn)已測得BC、DE、EF三段線段的長度分別為3、1、2.

(1)求出線段AE的長度;

(2)求出隧道CD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).

1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說明理由:

2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).

3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的空間幾何體中,是等腰直角三角形,,四邊形為直角梯形,,中點(diǎn).

)證明:平面

)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).已知函數(shù),.

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)已知函數(shù)的圖象在公共點(diǎn)(x0,y0)處有相同的切線,

(i)求證:處的導(dǎo)數(shù)等于0;

(ii)若關(guān)于x的不等式在區(qū)間上恒成立,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案