數(shù)列{an}是單調(diào)遞增數(shù)列,且an=2n-1-3an-1,n=1,2,….則首項(xiàng)a0的值等于________.


分析:通過遞推關(guān)系式an=2n-1-3an-1,考查特征,分解2n-1為兩部分,通過數(shù)列是單調(diào)遞增數(shù)列,求出數(shù)列的通項(xiàng)公式,然后求出首項(xiàng)a0的值.
解答:數(shù)列{an}是單調(diào)遞增數(shù)列,且an=2n-1-3an-1,n=1,2,….在an=2n-1-3an-1,中分解2n-1為兩部分,,就是an=-3an-1,所以,n=1,2,….
數(shù)列滿足單調(diào)遞增數(shù)列,所以首項(xiàng)a0的值等于
故答案為
點(diǎn)評:本題是難度較大題目,由遞推關(guān)系式求出數(shù)列的通項(xiàng)公式,是解題的難點(diǎn),分解數(shù)列中的項(xiàng)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*),數(shù)列{bn}滿足b1<0,3bn-bn-1=n(n≥2,n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn
(Ⅰ)求證:數(shù){bn-an}為等比數(shù)列;
(Ⅱ)求證:數(shù)列{bn}是單調(diào)遞增數(shù)列;
(Ⅲ)若當(dāng)且僅當(dāng)n=3時,Sn取得最小值,求b1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}滿足:a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*),數(shù)列{bn}滿足b1<0,3bn-bn-1=n(n≥2,n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn
(Ⅰ)求證:數(shù){bn-an}為等比數(shù)列;
(Ⅱ)求證:數(shù)列{bn}是單調(diào)遞增數(shù)列;
(Ⅲ)若當(dāng)且僅當(dāng)n=3時,Sn取得最小值,求b1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知數(shù)列{an}滿足:a1=,a2=,an+1=2an-an-1(n≥2,n∈N*),數(shù)列{bn}滿足b1<0,3bn-bn-1=n(n≥2,n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn
(Ⅰ)求證:數(shù){bn-an}為等比數(shù)列;
(Ⅱ)求證:數(shù)列{bn}是單調(diào)遞增數(shù)列;
(Ⅲ)若當(dāng)且僅當(dāng)n=3時,Sn取得最小值,求b1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年北京市東城區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知數(shù)列{an}滿足:a1=,a2=,an+1=2an-an-1(n≥2,n∈N*),數(shù)列{bn}滿足b1<0,3bn-bn-1=n(n≥2,n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn
(Ⅰ)求證:數(shù){bn-an}為等比數(shù)列;
(Ⅱ)求證:數(shù)列{bn}是單調(diào)遞增數(shù)列;
(Ⅲ)若當(dāng)且僅當(dāng)n=3時,Sn取得最小值,求b1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)最后沖刺必讀題解析30講(24)(解析版) 題型:解答題

已知數(shù)列{an}滿足:a1=,a2=,an+1=2an-an-1(n≥2,n∈N*),數(shù)列{bn}滿足b1<0,3bn-bn-1=n(n≥2,n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn
(Ⅰ)求證:數(shù){bn-an}為等比數(shù)列;
(Ⅱ)求證:數(shù)列{bn}是單調(diào)遞增數(shù)列;
(Ⅲ)若當(dāng)且僅當(dāng)n=3時,Sn取得最小值,求b1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案