8.函數(shù)y=2$\sqrt{x}$sin$\frac{x}{2}$cos$\frac{x}{2}$的導(dǎo)數(shù)是$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.

分析 先將函數(shù)化簡為y=$\sqrt{x}$sinx,再利用導(dǎo)數(shù)運算公式得出導(dǎo)數(shù).

解答 解:y=2$\sqrt{x}$sin$\frac{x}{2}$cosx=$\sqrt{x}$sinx,
∴y′=$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.
故答案為$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.

點評 本題考查了三角函數(shù)化簡及導(dǎo)數(shù)運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正四面體棱長為a,求正四面體內(nèi)切球體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正六棱臺的上、下底面邊長分別為2、8,側(cè)棱長等于9,求這個棱臺的高和斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F作圓O:x2+y2=a2的兩條切線,記切點分別為A,B,雙曲線的一條漸近線與圓O在第一象限的交點為C,若∠ACB=60°,則雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知平面內(nèi)A,B兩點的坐標分別為(2,2),(0,-2),O為坐標原點,動點P滿足|$\overrightarrow{BP}$|=1,則|$\overrightarrow{OA}$+$\overrightarrow{OP}$|的取值范圍為( 。
A.(1,3)B.[1,3]C.(1,9)D.[1,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在三棱錐P-ABC中,PB⊥地面ABC,∠BCA=90°,E,M分別為PC,AB的中點,點F在PA上,且AF=2FP.
(1)求證:AC⊥平面PBC;
(2)求證:CM∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè) P點在圓x2+(y-2)2=1上移動,點Q在橢圓$\frac{x^2}{9}+{y^2}=1$上移動,則|PQ|的最大值是1+$\frac{3\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知如圖(1)的圖象對應(yīng)的函數(shù)為y=f(x),給出①y=f(|x|);②y=|f(x)|-a;③y=-f(|x|);④y=f(-|x|).⑤y=|f(|x|)|-a,則如圖(2)的圖象對應(yīng)的函數(shù)可能是五個式子中的( 。
A.B.②④C.①②D.②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=loga(x+b)的大致圖象如圖,其中a,b為常數(shù),則函數(shù)g(x)=a-x+b的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案