(I)解:由題意
,
當(dāng)n≥2時a
n=S
n-S
n-1=
,
整理,得(a
n+a
n-1)(a
n-a
n-1-1)=0,
又?n∈N
*,a
n≠0,所以a
n+a
n-1=0或a
n-a
n-1-1=0,
當(dāng)a
n+a
n-1=0時,a
1=1,
,
得
,
;
當(dāng)a
n-a
n-1-1=0時,a
1=1,a
n-a
n-1=1,
得a
n=n,
.
(II)證明:當(dāng)a
n+a
n-1=0時,
,
|P
n+1P
n+2|=|P
nP
n+1|=
,所以|P
n+1P
n+2|-|P
nP
n+1|=0,
當(dāng)a
n-a
n-1-1=0時,
,
|P
n+1P
n+2|=
,|P
nP
n+1|=
,
|P
n+1P
n+2|-|P
nP
n+1|=
-
=
=
,
因為
>n+2,
>n+1,
所以0<
<1,
綜上0≤|P
n+1P
n+2|-|P
nP
n+1|<1.
分析:(I)由題意
,當(dāng)n≥2時a
n=S
n-S
n-1,由此可得兩遞推式,分情況可判斷數(shù)列{a
n}為等比數(shù)列或等差數(shù)列,從而可求得通項a
n,進(jìn)而求得S
n;
(II)分情況討論:當(dāng)當(dāng)a
n+a
n-1=0時,
,計算可得|P
n+1P
n+2|=|P
nP
n+1|=
,從而易得|P
n+1P
n+2|-|P
nP
n+1|的值;當(dāng)a
n-a
n-1-1=0時,
,利用兩點間距離公式可求得|P
n+1P
n+2|,|P
nP
n+1|,對|P
n+1P
n+2|-|P
nP
n+1|化簡后,再放縮即可證明結(jié)論;
點評:本題考查數(shù)列與函數(shù)的綜合,考查分類討論思想,解決本題的關(guān)鍵是利用a
n與S
n的關(guān)系先求得a
n.