(本小題滿分13分)
如圖,平面α⊥平面β,A∈α,B∈β,AB與平面α、β所成的角分別為和,過A、B分別作兩平面交線的垂線,垂足為A′、B′,若AB=12,求A′B′的長度.
解:在Rt△ABB′中,AB′=AB·sin=12×=6.……(5分)
在Rt△ABA′中,AA′=AB·sin=×12=6. ……(10分)
在Rt△A′AB′中,A′B′===6. ……(13分)
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,四面體ABCD中,O,E分別為BD,BC的中點,CA=CB=CD=BD=2,AB=AD=
.
(1)求證:AO⊥平面BCD;
(2)求點E到平面ACD的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四面體
中,
,
,且
(I)設
為線段
的中點,試在線段
上求一點
,使得
;
(II)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(14分)已知
是底面邊長為1的正四棱柱,
是
和
的交點。
⑴ 設
與底面
所成的角的大小為
,二面角
的大小為
。
求證:
;
⑵ 若點
到平面
的距離為
,求正四棱柱
的高。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題15分)
如圖在三棱錐P-ABC中,PA
分別在棱
,
(1)求證:BC
(2)當D為PB中點時,求AD與平面PAC所成的角的余弦值;
(3)是否存在點E,使得二面角A-DE-P為直二面角,并說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題12分)
如圖,四棱錐
中,底面ABCD為矩形,
底面ABCD,AD=PD=1,AB=
(
),E,F(xiàn)分別CD.PB的中點。
(Ⅰ)求證:EF
平面PAB;,
(Ⅱ)當
時,求AC與平面AEF所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分
12分)
已知直角梯形
中,
過
作
,垂足為
,
的中點,現(xiàn)將
沿
折疊,使得
,
(1)求證:
;
(2)設四棱錐D-ABCE的體積為
V,其外接球體積為
,求V
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本小題滿分12分)如圖,已知斜三棱柱
,
,
,
在底面
上的射影恰為
的中點
,又知
.
(I)求證:
;
(II)求
到平面
的距離;
(III)求二面角
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
.四面體
的外接球球心在
上,且
,
,在外接球面上
兩點
間的球面距離是
。
查看答案和解析>>