已知橢圓的離心率為,且經(jīng)過點(diǎn),圓的直徑為的長軸.如圖,是橢圓短軸端點(diǎn),動(dòng)直線過點(diǎn)且與圓交于兩點(diǎn),垂直于交橢圓于點(diǎn).
(1)求橢圓的方程;
(2)求 面積的最大值,并求此時(shí)直線的方程.
(1) (2)
【解析】
試題分析:(1)已知橢圓的離心率為即可得到與的關(guān)系式,再結(jié)合橢圓過點(diǎn),代入橢圓方程組成方程組可求解得到橢圓方程; (2) 要求面積可先求兩個(gè)弦長度,是一直線與圓相交得到的弦長,可采用圓的弦長公式,而是橢圓的弦長,使用公式求解,把面積表示成變量的函數(shù), 求其最值時(shí)可用換元法求解.對(duì)當(dāng)斜率為0時(shí)要單獨(dú)討論.
試題解析:(1)由已知得到,所以,即.
又橢圓經(jīng)過點(diǎn),故,
解得,
所以橢圓的方程是
(2)因?yàn)橹本且都過點(diǎn)
①當(dāng)斜率存在且不為0時(shí),設(shè)直線,直線,即,
所以圓心到直線的距離為,所以直線被圓所截弦
由得,
所以
.
所以.
令,則,
當(dāng),即時(shí),等號(hào)成立,
故面積的最大值為,此時(shí)直線的方程為
②當(dāng)斜率為0時(shí),即,此時(shí)
當(dāng)的斜率不存在時(shí),不合題意;
綜上, 面積的最大值為,此時(shí)直線的方程為.
考點(diǎn):直線與圓的位置關(guān)系,弦長公式,換元法求函數(shù)最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com