精英家教網 > 高中數學 > 題目詳情

【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數分布表如下:

年齡段

人數(單位:人)

180

180

160

80

約定:此單位45歲~59歲為中年人,其余為青年人,現按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.

(1)抽出的青年觀眾與中年觀眾分別為多少人?

(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關心民生大事,其余人熱衷關心民生大事.完成下列列聯(lián)表,并回答能否有的把握認為年齡層與熱衷關心民生大事有關?

熱衷關心民生大事

不熱衷關心民生大事

總計

青年

12

中年

5

總計

30

(3)若從熱衷關心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上臺表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

【答案】(1) ;(2)列聯(lián)表見解析,沒有的把握認為年齡層與熱衷關心民生大事有關;(3).

【解析】試題分析:(1)第(1)問,直接利用分層抽樣的定義求解.2)第(2)問,利用隨機變量的公式計算得到它的值,再查表下結論. 3)第(3)問,利用古典概型的概率公式解答.

試題解析:

(1)抽出的青年觀眾為18人,中年觀眾12人

(2)列聯(lián)表如下:

熱衷關心民生大事

不熱衷關心民生大事

總計

青年

6

12

18

中年

7

5

12

總計

13

17

30

∴沒有的把握認為年齡層與熱衷關心民生大事有關.

(3)熱衷關心民生大事的青年觀眾有6人,記能勝任才藝表演的四人為,其余兩人記為,則從中選兩人,一共有如下15種情況:

抽出的2人都能勝任才藝表演的有6種情況,

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,圓的參數方程為為參數),直線經過點,且傾斜角為

(1)寫出直線的參數方程和圓的標準方程;

(2)設直線與圓相交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,若ADBC,則AB2BD·BC;類似地有命題:在三棱錐ABCD中,AD⊥平面ABC,若A點在平面BCD內的射影為M,則有SSBCM·SBCD.上述命題是 (  )

A. 真命題

B. 增加條件“ABAC”才是真命題

C. 增加條件“M為△BCD的垂心”才是真命題

D. 增加條件“三棱錐ABCD是正三棱錐”才是真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,bc,若acos2ccos2b.

(1)求證:a,bc成等差數列;

(2)B60°b4,求ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】目前我國城市的空氣污染越來越嚴重,空氣質量指數一直居高不下,對人體的呼吸系統(tǒng)造成了嚴重的影響,現調查了某城市500名居民的工作場所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:

室外工作

室內工作

合計

有呼吸系統(tǒng)疾病

150

無呼吸系統(tǒng)疾病

100

合計

200

(Ⅰ)請把列聯(lián)表補充完整;

(Ⅱ)你是否有95%的把握認為感染呼吸系統(tǒng)疾病與工作場所有關;

(Ⅲ)現采用分層抽樣從室內工作的居民中抽取一個容量為6的樣本,將該樣本看成一個總體,從中隨機抽取2人,求2人都有呼吸系統(tǒng)疾病的概率.

參考公式與臨界表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,p,q

已知pq成立的必要不充分條件,求實數m的取值范圍;

成立的充分不必要條件,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)文”的滿意程度,組織居民給活動打分(分數為整數.滿分為100分).從中隨機抽取一個容量為120的樣本.發(fā)現所有數據均在內.現將這些分數分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:

(1)算出第三組的頻數.并補全頻率分布直方圖;

(2)請根據頻率分布直方圖,估計樣本的眾數、中位數和平均數.(每組數據以區(qū)間的中點值為代表)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數

(1)當時,求函數上的最值;

(2)若函數上單調遞增,求的取值范圍.

查看答案和解析>>

同步練習冊答案