已知函數(shù)
若函數(shù)在和上是增函數(shù),在是減函數(shù),求的值;
討論函數(shù)的單調(diào)遞減區(qū)間;
如果存在,使函數(shù),,在處取得最小值,試求的最大值.
;當(dāng)時,單調(diào)減區(qū)間為當(dāng)時,單調(diào)減區(qū)間為;
.
【解析】
試題分析:通過求導(dǎo)以及極值點的導(dǎo)數(shù)計算的值為1;通過導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系討論函數(shù)的單調(diào)減區(qū)間;先寫出函數(shù)表達(dá)式,是一個三次多項式.由,在處取得最小值知在區(qū)間上恒成立,從而得 再討論與時利用二次函數(shù)在閉區(qū)間的最值問題解得.
試題解析:(Ⅰ) 1分
函數(shù)在和上是增函數(shù),在上是減函數(shù),
∴為的兩個極值點,∴即 3分
解得: 4分
(Ⅱ),的定義域為,
5分
當(dāng)時,由解得,的單調(diào)減區(qū)間為 7分
當(dāng)時,由解得,的單調(diào)減區(qū)間為 9分
(Ⅲ),據(jù)題意知在區(qū)間上恒成立,即① 10分
當(dāng)時,不等式①成立;
當(dāng)時,不等式①可化為② 11分
令,由于二次函數(shù)的圖象是開口向下的拋物線,故它在閉區(qū)間上的最小值必在端點處取得,又,所以不等式②恒成立的充要條件是,即 12分
即,因為這個關(guān)于的不等式在區(qū)間上有解,所以
13分
又,故, 14分
考點:1.函數(shù)的求導(dǎo);2.利用導(dǎo)數(shù)求函數(shù)單調(diào)性;3.利用二次函數(shù)圖象解一元二次不等式的恒成立問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011年山東省青島市高考模擬練習(xí)題(一)數(shù)學(xué)(理) 題型:解答題
(本小題滿分12分)已知函數(shù).
(Ⅰ)若函數(shù)在上是增函數(shù),求正實數(shù)的取值范圍;
(Ⅱ)若,且,設(shè),求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
若函數(shù)在和處取得極值,試求的值;
在(1)的條件下,當(dāng)時,恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西省高三高考模擬考試?yán)頂?shù) 題型:解答題
(本小題滿分12分)(注意:在試題卷上作答無效)
已知函數(shù).
(Ⅰ)若曲線在和處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一第二次段考數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)已知函數(shù).
(1)試討論函數(shù)在的單調(diào)性;
(2)若,求函數(shù)在上的最大值和最小值;
(3)若函數(shù)在區(qū)間上只有一個零點,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com