(2014•閘北區(qū)三模)將正整數(shù)1,2,3,4,…,n2(n≥2)任意排成n行n列的數(shù)表.對于某一個數(shù)表,計算各行和各列中的任意兩個數(shù)a,b(a>b)的比值,稱這些比值中的最小值為這個數(shù)表的“特征值”.若aij表示某個n行n列數(shù)表中第i行第j列的數(shù)(1≤i≤n,1≤j≤n),且滿足aij=,當(dāng)n=4時數(shù)表的“特征值”為 .

 

【解析】

試題分析:寫出當(dāng)n=4時的圖表,由特征值的定義可得答案.

【解析】
當(dāng)n=4時,數(shù)表為

21 1 6 11 16

17 22 2 7 12

13 18 23 3 8

9 14 19 24 4

5 10 15 20 25

數(shù)表的“特征值”為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2015年人教A版選修1-1 3.4生活中的優(yōu)化問題舉例練習(xí)卷(解析版) 題型:填空題

已知某生產(chǎn)廠家的年利潤y(單位:萬元)與年產(chǎn)量x(單位:萬件)函數(shù)關(guān)系式為,則使該生產(chǎn)廠家獲取最大年利潤的年產(chǎn)量為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2015人教A版必修二2.1空間點、直線、平面間位置關(guān)系練習(xí)卷(解析版) 題型:

設(shè)l、m是兩條不同的直線,α、β是兩個不同的平面,給出下列5個命題:

①若m⊥α,l⊥β,則l∥α;

②若m⊥α,l?β,l∥m,則α⊥β;

③若α∥β,l⊥α,m∥β,則l⊥m;

④若α∥β,l∥α,m?β,則l∥m;

⑤若α⊥β,α∩β=l,m⊥l,則m⊥β.

其中正確命題的個數(shù)是( )

A.1 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:填空題

已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量=,并且矩陣M對應(yīng)的變換將點(﹣1,2)變換成(9,15).求矩陣M.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:填空題

矩陣N=的特征值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:填空題

(2014•汕頭二模)如圖,AB是圓O的直徑,PB,PE分別切圓O于B,C,若∠ACE=40°,則∠P= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:填空題

(2014•重慶)過圓外一點P作圓的切線PA(A為切點),再作割線PBC依次交圓于B、C,若PA=6,AC=8,BC=9,則AB= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:選擇題

(2010•焦作二模)如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=( )

A.4 B.3 C.5 D.6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-2 3.2復(fù)數(shù)的四則運算練習(xí)卷(解析版) 題型:選擇題

設(shè)z是復(fù)數(shù),a(z)表示zn=1的最小正整數(shù)n,則對虛數(shù)單位i,a(i)=( )

A.8 B.6 C.4 D.2

 

查看答案和解析>>

同步練習(xí)冊答案